1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Minor loss in pipe

  1. Apr 27, 2016 #1
    1. The problem statement, all variables and given/known data

    which formula is correct ? the formula in the first ? or in the second ? one is using the mean velocity , while the another one is using velocity difference between vena contarcta and velocity at exit ....
    2. Relevant equations


    3. The attempt at a solution
     

    Attached Files:

    • 165.PNG
      165.PNG
      File size:
      60.6 KB
      Views:
      69
    • 166.PNG
      166.PNG
      File size:
      24.2 KB
      Views:
      64
  2. jcsd
  3. Apr 27, 2016 #2

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    No, both end up referencing the mean velocity in the continuing pipe. The k factor comes from how that velocity relates to the velocity difference from the fastest velocity.
     
  4. Apr 27, 2016 #3
    do you mean none of them are correct , then what is the correct formula , can you show it ?
     
  5. Apr 27, 2016 #4

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    No, I mean the two are saying the same.
     
  6. Apr 27, 2016 #5
    ok
     
  7. May 3, 2016 #6
    are you referring to 165?
     
  8. May 3, 2016 #7
    the velocity means the velocity throughout the pipe and reservoir ?
     
  9. May 3, 2016 #8

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Both are interested in the mean velocity further along the pipe. 165 calls this v2; 166 calls it ##\bar v##. The equation in 165 relates it to he and ke; 166 has the same equation, at the end, but calls them hL and kL.
    The remaining equations in 166 show how this equation is obtained. 165 omits that.
     
  10. May 3, 2016 #9
    i assume you said that the v is for 165 , while v_2 is for 166 , can you explain what does the v mean ? v means mean velocity at which region ??? the v_2 mean the velocity at area 2 , am i right ?
     
  11. May 3, 2016 #10

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Yes, sorry, I wrote those two backwards.
    It describes v2 as the mean velocity in the pipe. You can think of that either as the mean velocity across the whole width of the pipe where the vena contracta is, or as the actual velocity much further along the pipe. The two must be the same by conservation of volume flow rate.
     
  12. May 3, 2016 #11
    Do you mean v in the 165 is the mean velocity at the vena contrava ??
     
  13. May 3, 2016 #12
    Why we can consider it as velocity further from the pipe?
     
  14. May 3, 2016 #13
    Why we can consider it as velocity further from the pipe?
     
  15. May 3, 2016 #14

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    If you take a section right through the pipe at any point along it, the net volume flow rate through it must be the same at all points. If not, liquid is being created or destroyed somewhere. So the average velocity, taken across the whole width of the pipe, must also be constant along the pipe.
    As one of the diagrams shows, at the vena contracta the velocity might be negative at the sides (a backwater), but so great in the centre that the average over the whole width is just the same as further along the pipe.
     
  16. May 4, 2016 #15
    I didn't see the velocity of water is negative, can you point out which part??
     
  17. May 4, 2016 #16

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    The diagram in 166 shows a reverse flow either side of the main flow at the vena contracta.
     
  18. May 4, 2016 #17
    You said that we can consider the velocity away from the pipe? You mean velocity after the vena contrava , am I right??
     
  19. May 4, 2016 #18

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    The mean velocity in the pipe is the same all the way along it. As I posted,that follows immediately from the fact that it is an incompressible liquid. If you want to suppose that eventually, well down the pipe, the velocity is the same across the whole width of the pipe then, yes, that will all be at that mean velocity.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Minor loss in pipe
  1. Head loss in pipe (Replies: 33)

Loading...