Misner-Thorne-Wheeler, p.92, Box 4.1, typo?

  • Thread starter Thread starter gheremond
  • Start date Start date
  • Tags Tags
    Box
gheremond
Messages
7
Reaction score
0
In Misner-Thorne-Wheeler Gravitation, Chapter 4, Page 92, Box 4.1, at section 4, there is a formula for the contraction of a p-form and a p-vector. Now, it states that the contraction of a p-form basis with a p-vector basis gives the antisymmetrizer symbol, \left\langle {\omega ^{i_1 } \wedge \ldots \wedge \omega ^{i_p } ,e_{j_1 } \wedge \ldots \wedge e_{j_p } } \right\rangle = \delta ^{i_1 \ldots i_p } _{j_1 \ldots j_p } and there is a reference to exercises 3.13 and 4.12. I tried this part many many times and I always find the result to be p! times the antisymmetrizer. I also compared it for the case p=2 using the definition of the symbol from exercise 3.13, still the same result, I get an overall 2. Can anybody please explain what am I doing wrong here?
 
Physics news on Phys.org
No typo. The symbol \delta^{ij}_{kl}\equiv \delta^{[i}_{k}\delta^{j]}_{l}\equiv \frac{1}{2!}\left(\delta^{i}_{k}\delta^{j}_{l}-\delta^{j}_{k}\delta^{i}_{l}\right) (which generalizes to n indices with a 1/n! factor), and basis 1-forms act on basis vectors as \omega^{i}(e_{j})=\delta^{i}_{j}.
 
Last edited:
Thanks for the reply. However, if you look on page 88, you will see that the definition for \delta ^{\alpha \beta } _{\mu \nu } = \delta ^\alpha _\mu \delta ^\beta _\nu - \delta ^\alpha _\nu \delta ^\beta _\mu according to MTW does not carry the 1/2! factor that you mention. Furthermore, if you expand the wedge products into tensor products within the contraction symbol, you get \left\langle {\omega ^\alpha \wedge \omega ^\beta ,e_\mu \wedge e_\nu } \right\rangle = \left\langle {\omega ^\alpha \otimes \omega ^\beta - \omega ^\beta \otimes \omega ^\alpha ,e_\mu \otimes e_\nu - e_\nu \otimes e_\mu } \right\rangle

= \left\langle {\omega ^\alpha \otimes \omega ^\beta ,e_\mu \otimes e_\nu } \right\rangle - \left\langle {\omega ^\alpha \otimes \omega ^\beta ,e_\nu \otimes e_\mu } \right\rangle - \left\langle {\omega ^\beta \otimes \omega ^\alpha ,e_\mu \otimes e_\nu } \right\rangle + \left\langle {\omega ^\beta \otimes \omega ^\alpha ,e_\nu \otimes e_\mu } \right\rangle

= \delta ^\alpha _\mu \delta ^\beta _\nu - \delta ^\alpha _\nu \delta ^\beta _\mu - \delta ^\beta _\mu \delta ^\alpha _\nu + \delta ^\beta _\nu \delta ^\alpha _\mu = 2\left( {\delta ^\alpha _\mu \delta ^\beta _\nu - \delta ^\alpha _\nu \delta ^\beta _\mu } \right) = 2 \delta ^{\alpha \beta } _{\mu \nu }

again, using all the conventions of the book up to this point.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
5
Views
2K
Replies
4
Views
6K
Replies
2
Views
3K
Replies
1
Views
4K
Back
Top