Modular arithmetic question about functions

elegysix
Messages
404
Reaction score
15
Hello, I'm new to modular arithmetic, but I was wondering -

Given that
b = R mod(n) where b,R, and n are all integers

Is it plausible to consider
G(x) = R(x) mod(f(x)) with G,R,f all functions of x?

Has this been done or does this not even make sense?
If its been done, what is it called?
If it doesn't work, could you explain a little?

thanks :D
 
Physics news on Phys.org
Yes, it does make sense. Have you studied abstract algebra yet? Modular arithmetic is a special case of quotient objects, in this case a quotient ring. On http://en.wikipedia.org/wiki/Quotient_ring" they have some good examples involving polynomials and smooth functions.

For another example, let R := \{f \in C[0,1] : f \quad \text{is continuous} \} be the ring of continuous real-valued functions defined on [0,1]. Given f \in R we can define an equivalence relation by g~h iff g(x) - h(x) =a(x)f(x) for some function a(x) \in R. Another way to write this would be g(x) = h(x) mod (f(x))
 
Last edited by a moderator:
not only is it possible, but in fact, it's one of the ways in which finite fields are created.

normally, what one does, is first create the integers mod p, where p is a prime.

then one considers Zp[x], the set of all polynomials with coefficients in Zp (integers mod p).

and THEN, one picks an "irreducible" polynomial (for our purposes, this just means "no factoring possible"), say g(x), and considers the polynomials "mod g(x)".

doing that, gives a finite field, which is surprising, because it's not immediately intuitive that identifying a certain subset of the infinite number of polynomials, gives you such a small (finite) set of "remainders".

one surprisingly familar example of a set of functions (mod f(x)) is the complex numbers. first, you take the set of all real polynomials, R[x].

then, you "mod x2 + 1". that is, you declare p(x) to be equivalent to q(x) if and only if:

p(x) = q(x) + (x2+1)k(x)

we can write [p(x)] for the equivalence class of p(x). now look what happens with [x]:

[x]2 + [1] = [x2+ 1] = [0]

(since x2+1 = 0 + (x2+1)(1), here "q(x)" is 0, and "k(x)" is 1).

this means that [x]2 = -[1] = [-1].

this means that ("mod x2 + 1") [x] is a square root of [-1].

so we have (there's some technical details I'm glossing over) the bijection:

a+bi <---> [a+bx] = [a][1] + [x], that is [x] acts "just like" i.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top