Moment of inertia and torque of a yoyo

AI Thread Summary
The discussion revolves around calculating the moment of inertia and torque of a yoyo made of three aluminum disks. The user is uncertain about whether to include the middle disk's radius in the moment of inertia calculation and is attempting to derive the correct formulas. They express confusion regarding the torque calculation when the yoyo is falling, particularly about the forces acting on it and the appropriate axis of rotation. A participant suggests using either the moment of inertia about the mass center or applying the parallel axis theorem for consistency in calculations. The user acknowledges mistakes in their approach and seeks clarification on the correct definitions and equations to use.
JulienB
Messages
408
Reaction score
12

Homework Statement



Hi everybody! I know that is a classical problem, but I haven't been able to find an answer to my questions in the other threads so here we go:

We have a yoyo made of 3 aluminium disks (density ρ). The two side disks have a radius R and thickness D, and the middle disk has a radius R0 and a thickness D0. The string has length l (see picture).

a) Calculate the moment of inertia of the yoyo. Derive then the moment of inertia of a disk of mass M and radius r about its axis of symmetry.
b) Calculate the torque when the yoyo is "falling". In which direction does it point?
c) What is the angular frequency ω when the string is half unrolled?

Homework Equations



Moment of inertia, torque, tangential acceleration and so on.

The Attempt at a Solution



a) My first issue attempting to solve this problem is that I am unsure whether the radius R0 should be considered when calculating the moment of inertia of the yoyo. I am confused, because the string is responsible for the rotation but yet the yoyo is rotating about its axis of symmetry. Therefore I would assume the moment of inertia of the yoyo is:

Iyoyo = 2⋅Ibig disk + Ismall disk
= 2⋅(ρπDR4) + ½ρπD0R04
= ρπ⋅(DR4 + ½⋅D0R04)

I quickly add the calculation for the moment of inertia of a disk:
Idisk = ρ∫ r2dV = ρDπr4/2 = ½ ⋅Mr2

Is that correct, or is there any need to use the parallel axis theorem?

b) Here it becomes complicated. I think the only force playing a role on the rotation is the tension force of the string, therefore:

Στ = I⋅α = F⋅R0 where α is of course the angular acceleration ⇒ α = aT/R0.

I also think aT = ay and Myoyo⋅g - I⋅α/R0 = Myoyo⋅g - I⋅ay/R02 = Myoyo⋅ay

ay = Myoyo⋅g / (Myoyo + I/R0)

But when I insert that in my torque equation, it gets crazy:

Στ = I⋅α = (I/r0)⋅(Myoyo⋅g / M + I/R0)

When I plug my moment of inertia in, nothing good comes out and it gets very messy. Have I made a mistake or should I also put up an equation of energy?Thank you very much in advance.EDIT: I just saw a similar problem on internet where the guy takes the point of contact of the string with the disk as the torque axis. Is that really allowed?? If so, would I have to use the parallel axis theorem because we don't take the center of the yoyo as axis of rotation anymore? Julien.
 

Attachments

  • Klausuren.png
    Klausuren.png
    30.1 KB · Views: 1,471
Last edited:
Physics news on Phys.org
You seem to have forgotten the factor 1/2 in Ibig disk.
You can approach it in either of two ways. Use the MoI about mass centre and torque about mass centre (radius x tension); or use the parallel axis theorem to find the MoI about point of contact of the string and torque about that point (radius x mg). They should lead to the same answer. You just have to pick your axis and be consistent.
 
@haruspex I don't think I forgot the 1/2, because there are two big disks. No? I'll give the problem another try tomorrow and post again :)
 
JulienB said:
@haruspex I don't think I forgot the 1/2, because there are two big disks. No? I'll give the problem another try tomorrow and post again :)
Well, you forgot it here:
JulienB said:
= 2⋅(ρπDR4) + ½ρπD0R04
But I see you found it again here:
JulienB said:
= ρπ⋅(DR4 + ½⋅D0R04)
 
@haruspex My mistake I forgot it by copying my notes. Thank you for your attention :)
 
I gave it another go but still get a crazy result for the torque:
 

Attachments

  • image.jpeg
    image.jpeg
    32.5 KB · Views: 726
JulienB said:
I gave it another go but still get a crazy result for the torque:
Why do you think it's crazy. I would not bother multiplying out the factors in the numerator. You have an error in the denominator going from the second line to the third line... a factor of 2.
 
  • Like
Likes JulienB
@haruspex Thank you for your answer. I'm doing the problem again, and I'm wondering: shouldn't I have taken aT = g (instead of the whole acceleration (m⋅g - T)/m) in my torque equation?

Julien.
 
JulienB said:
@haruspex Thank you for your answer. I'm doing the problem again, and I'm wondering: shouldn't I have taken aT = g (instead of the whole acceleration (m⋅g - T)/m) in my torque equation?

Julien.
How are you defining aT? Certainly the sum of vertical forces is mg-T downwards.
 
  • Like
Likes JulienB
  • #10
@haruspex Nevermind I got it wrong. Sorry for that :)
 
Back
Top