Moment of Inertia: Kinetic Energy, Momentum & Conservation

AI Thread Summary
The discussion centers on the relationship between kinetic energy, momentum, and angular momentum in rotating bodies. It clarifies that while kinetic energy can be expressed in terms of moment of inertia (I) and angular velocity (ω), angular momentum is defined as Iω, which differs from the linear momentum calculation. The distinction is made that linear momentum is a sum of the momenta of individual particles, while angular momentum is a vector quantity with its own specific formulation. Additionally, the conservation of angular momentum is emphasized, suggesting that it remains constant in a closed system. Understanding these concepts requires recognizing the differences between linear and angular quantities in physics.
GeneralOJB
Messages
42
Reaction score
0
I read that for a rotating body the kinetic energy ##E_k = \sum \frac{1}{2}mv^2 = \frac{1}{2}{\omega}^2∑mr^2 = \frac{1}{2}I{\omega}^2## where ##I## is the moment of inertia.

If we did the same thing for momentum then ##P = ∑mv = \omega\sum mr##

So why is angular momentum ##I\omega=\omega\sum mr^2##? Shouldn't the momentum just be the sum of the momentum of all the particles, like we did with kinetic energy?

Also why should I believe that this quantity ##I\omega## is conserved?
 
Last edited:
Physics news on Phys.org
Use LaTeX :smile:
##E_k = \sum\frac{1}{2}mv^2 = \frac{1}{2}\sum m(\omega r)^2 = \frac{1}{2}\omega^2\sum mr^2 = \frac{1}{2}I\omega^2##
 
Ah, didn't know we had LaTeX.
 
GeneralOJB said:
Shouldn't the momentum just be the sum of the momentum of all the particles.
That would be the total linear momentum, not the total angular momentum.

Note that linear and rotational kinetic energy are both of the same physical scalar quantity. While linear and angular momentum are two different vector quantities. You should look at the vector formulas for momentum to understand it better.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top