Moment of inertia with system of rods

AI Thread Summary
The discussion focuses on calculating the moment of inertia for a system of three rods arranged in an inverted U shape. The problem involves determining the moment of inertia with respect to various axes, including those through each bar and through the center of mass. A participant struggled with the calculations for part (a) and noted that treating the rods as point masses led to incorrect results. The correct answers for the moments of inertia were provided, emphasizing the need for continuous mass distribution in calculations. The conversation highlights the importance of using appropriate methods for calculating inertia in systems of rigid bodies.
symbolic
Messages
2
Reaction score
0

Homework Statement


Three slim rods with the same length L are placed in a inverted U shape, as the figure shows. The masses of the vertical rods are the same, while the third bar has the mass 3 times bigger than the first or the second rod. The rods' thickness should be ignored. Find the moment of inercia of the system in relation to the following axes:

(a) containing each bar;
(b) parallel to the plane of the page and perpendicular to the bars, going through their centers of mass;
(c) perpendicular to the plane of the page, going through the center of mass of each bar;
(d) perpendicular to the plane of the page, going through the center of mass of the system xCM = L / 2 and yCM = 4 L / 5 taking the origin as the lowest point in the left vertical bar;

Answers: (a) 2 ML2, (2/3) ML2 e 2 ML2 ; (b) (11/12) ML2 e (3/4) ML2; (c) (35/12) ML2 , (17/12) ML2 e (35/12) ML2; (d) (73/60) ML2.

(question was translated, let me know if something is difficult to understand)

imag.png


Homework Equations


00162d0dc4ecf6dade58332e43a0161f1185cf62

5dc9293f241ec13cf222a361999f68a639fe4d8b


The Attempt at a Solution


I tried to solve question (a) considering each bar as a point, that failed however.

Calculating Icm of the first bar with an axis going through it

Icm = M(0²) + 3M(L/2)² + M(M(0²)
Icm = 3/4ML²

I tried a few variations of this but couldn't reach the answer 2 ML2, so now I'm stuck. :oldfrown: Any help is appreciated.
 

Attachments

  • imag.png
    imag.png
    1.2 KB · Views: 392
Physics news on Phys.org
For some reason it gives me an errror when I try to edit the topic. Here are the correct answers:

(a) 2 ML², (2/3) ML² e 2 ML² ; (b) (11/12) ML² e (3/4) ML²; (c) (35/12) ML² , (17/12) ML² e (35/12) ML²; (d) (73/60) ML².

and M(M(0²) should be M(0²)
 
Your discrete definition of rotational inertia also has a continuous form which should be used for continuous bodies, like rods.

The inertia of the middle bar about one of the edge bars comes from that integral over all the mass. The inertia is not the same if you replace the body with a point-mass at its center, which is what your math seems to be doing.

Your math also seems to say that the inertia of one edge bar about the other edge bar is zero?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top