recon said:
I really thought A would move to the left after collision. It's this part of the question 'After the collision the two trucks separate and move away from each other' that confuses me.
Gokul43201 said:
This is just an ambiguously worded question and the solution has probably assumed p_A (final) = 8 kgm/s with the positive x-axis pointing to the right. (This wasn't drawn in the picture, was it ?)
I agree. The question seems ambiguous to me also. You cannot know before solving the problem which way truck A is moving after the collision unless you assume the 8kgm/s is to be taken as positive, continuing in the original direction. I thought perhaps you could eliminate one possibility based on energy (assuming no explosion to increase the energy of the system), but in fact you cannot.
You can show (below) that either solution demands the trucks be of equal mass. If energy were conserved, both trucks would recoil with an exchange of velocity. Since the -8 and +22 solution has the trucks recoiling with less than inital velocities, no kinetic energy is created, but not much is lost. The +8 and +6 solution corresponds to a much higher, and no doubt more realistic energy loss. However, without specifying energy loss or final direction, both solutions are valid
m_A v_{Ai} + m_B v_{Bi} = m_A v_{Af} + m_B v_{Bf}
m_A \left( {v_{Ai} - v_{Af} } \right) = m_B \left( {v_{Bf} - v_{Bi} } \right)
\frac{{m_A }}{{m_B }} = \frac{{\left( {v_{Bf} - v_{Bi} } \right)}}{{\left( {v_{Ai} - v_{Af} } \right)}}
m_A v_{Ai} + m_B v_{Bi} = 24Ns - 10Ns = 14Ns
K.E._i = \frac{{\left( {24Ns} \right)^2 }}{{2m_A }} + \frac{{\left( {10Ns} \right)^2 }}{{2m_B }}
Case 1: Mass A moves to the left
m_A v_{Af} + m_B v_{Bf} = - 8Ns + 22Ns = 14Ns
\frac{{m_A }}{{m_B }} = \frac{{\left( {v_{Bf} - v_{Bi} } \right)}}{{\left( {v_{Ai} - v_{Af} } \right)}} = \frac{{22Ns - \left( { - 10Ns} \right)}}{{24Ns - \left( { - 8Ns} \right)}} = \frac{{32}}{{32}} = 1 \Rightarrow m_A = m_B = m
\Delta K.E. = \frac{{\left( {8Ns} \right)^2 + \left( {22Ns} \right)^2 }}{{2m}} - \frac{{\left( {24Ns} \right)^2 + \left( {10Ns} \right)^2 }}{{2m}} = \frac{{\left( {548 - 676} \right)N^2 s^2 }}{{2m}} = - \frac{{64N^2 s^2 }}{m}
Case 2: Mass A moves to the right
m_A v_{Af} + m_B v_{Bf} = 8Ns + 6Ns = 14Ns
\frac{{m_A }}{{m_B }} = \frac{{\left( {v_{Bf} - v_{Bi} } \right)}}{{\left( {v_{Ai} - v_{Af} } \right)}} = \frac{{6Ns - \left( { - 10Ns} \right)}}{{24Ns - \left( {8Ns} \right)}} = \frac{{16}}{{16}} = 1 \Rightarrow m_A = m_B = m
\Delta K.E. = \frac{{\left( {8Ns} \right)^2 + \left( {6Ns} \right)^2 }}{{2m}} - \frac{{\left( {24Ns} \right)^2 + \left( {10Ns} \right)^2 }}{{2m}} = \frac{{\left( {100 - 676} \right)N^2 s^2 }}{{2m}} = - \frac{{288N^2 s^2 }}{m}
Case 2 does seem more representative of an actual collision, but not the only possible answer.