alexepascual
- 371
- 1
Turin,
Your posts are not confusing. I just was unfamiliar with the notation you used. As a matter of fact, I think the only thing I believe I didn't understand was the square brackets. But your post made very clear where I was erring and how to fix it. The fact that you used time domain instead of space domain didn't confuse me at all either. Your explanation about the notation in your last post makes everything absolutely clear.
With respect to the kernel, I understand very well your definition. This definition coincides with the one given by Haelfix but I can't make a connection with the one given in my linear algebra book. I did a Google search on the "kernel of a transformation" and the definitions I saw coincided with the linear algebra book.
According to this definition, the kernel is that sub-set of the domain that is mapped by the transformation to zero. If we think of the transformation as represented by a matrix and the domain and range composed by vectors (functions), then this other definition would define the kernel as a set of vectors (functions) while your definition would consider it as an element of the transformation matrix. Maybe these are two completely different meanings of the same word, or maybe they are somehow connected or equivalent but I can't see the relationship.
Your posts are not confusing. I just was unfamiliar with the notation you used. As a matter of fact, I think the only thing I believe I didn't understand was the square brackets. But your post made very clear where I was erring and how to fix it. The fact that you used time domain instead of space domain didn't confuse me at all either. Your explanation about the notation in your last post makes everything absolutely clear.
With respect to the kernel, I understand very well your definition. This definition coincides with the one given by Haelfix but I can't make a connection with the one given in my linear algebra book. I did a Google search on the "kernel of a transformation" and the definitions I saw coincided with the linear algebra book.
According to this definition, the kernel is that sub-set of the domain that is mapped by the transformation to zero. If we think of the transformation as represented by a matrix and the domain and range composed by vectors (functions), then this other definition would define the kernel as a set of vectors (functions) while your definition would consider it as an element of the transformation matrix. Maybe these are two completely different meanings of the same word, or maybe they are somehow connected or equivalent but I can't see the relationship.