jaketodd said:
For example, in the double slit experiment, is momentum transferred to say, the wall in between the slits even when the particle manifests on the wall behind the slits? In other words: Is momentum transferred to places where the particle does not manifest?
Thanks!
Jake
That's a good question. Here's my educated guess of the answer:
Let me make sure I understand your question. You're talking about a single particle approaching a wall with two slits, where some of its wavefunction passes through both slits and reaches the back wall and produces an interference pattern. Here's a diagram:
~~~particle~~~-------A----------B
(I think one dimension's enough to think things through.) "A" is the wall where the slits are, and "B" is the back wall. The particle approaches from the left. It has a certain probability of passing through wall A, but none of going beyond wall B. You're asking if the particle can transfer momentum to both "A" and "B" at the same time.
I don't think so.
There are two things which we could measure here: position and momentum. If we know the particle's either at A or B, that would be a position measurement.
If we measure the momentum transferred to some wall, that would be a momentum measurement of the particle. It would, in practice, also be a position measurement. For example, if the particle is an electron, and the wall is negatively charged, then the existence of a significantly large change in momentum of the wall implies a force between the electron and the wall, which would imply that they were close together. Therefore, if we assume the interaction between the wall and the particle is short-range, measuring a change in momentum of one wall implies that the particle's position is measured, too. For example, if we know wall A was impacted by the particle, and we know the wall's force is short-range, then we know the particle was near wall A.
To summarize, the particle approaches from the left as a broad wavefunction. If it transfers momentum to wall A, it must be localized near A, and then it can't be close enough to wall B to transfer momentum to that wall as well. And vice versa.