MHB More questions on psd and pd of matrices

  • Thread starter Thread starter insixyears
  • Start date Start date
  • Tags Tags
    Matrices Pd Psd
insixyears
Messages
3
Reaction score
0
First question: If A is pd, then A^-1 is pd.
Outline of answer:
  1. If A is pd, then there exists a nonsingular matrix P st A=P'P
  2. Then A^-1 = (P'P)^-1 = (P^-1) * (P^-1)' = (P^-1)' * (P^-1)
3. If (P^-1)' * (P^-1), then there exists a A^-1 that is positive definite

Second question: If rank(Anxp) = p<n, then A'A is pd.
Outline of answer:
  1. x'(A'A)x = (Ax)'(Ax)
  2. (Ax)'(Ax) is a sum of squares which is > 0 as long as Ax does not = 0

Thanks =)

EDIT: I think I figured it out if anyone wants me to post the answers. I deleted the attempts since they look plain stupid in retrospect
 
Last edited:
Physics news on Phys.org
crabchef said:
First question: If A is pd, then A^-1 is pd.
Outline of answer: 1. If A is pd, then there exists a nonsingular matrix P st A=P'P

Right.

2. Then A^-1 = (P'P)^-1 = (P^-1) * (P^-1)' = (P^-1)' * (P^-1)

Right. Now, denoting $Q=(P^{-1})^t$ we have $A^{-1}=Q^tQ=Q^tIQ.$

If (P^-1)' * (P^-1), then there exists a A^-1 that is positive definite

This has no sense. There exists a non singular matrix $Q$ such that $A^{-1}=Q^tIQ$ which implies $A^{-1}$ is positive definite.

---------- Post added at 09:56 AM ---------- Previous post was at 09:38 AM ----------

crabchef said:
Second question: If rank(Anxp) = p<n, then A'A is pd.
Outline of answer:1. x'(A'A)x = (Ax)'(Ax)

Right.

2. (Ax)'(Ax) is a sum of squares which is > 0 as long as Ax does not = 0

More details: denote $x=(x_1,\ldots,x_p)^t$ and $y=(y_1,\ldots,y_n)^t=Ax$, then $x^t(A^tA)x=(Ax)^t(Ax)=y^ty=y_1^2+\ldots+y_n^2\geq 0$ for all $y$. But $y_1^2+\ldots+y_n^2=0$ if and only if $y=0$ and $Ax=0$ if and only if $x=0$ (why?) which implies $A^tA$ is definite positive.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top