Motion of a Particle: Solutions & Examples

AI Thread Summary
The discussion focuses on understanding the trajectory of a particle given its acceleration in a specific format. The user is exploring the condition where a constant vector 'a' satisfies the equation a•r=constant, which would imply conical motion. However, there is skepticism regarding the validity of this conclusion, as the proposed equation suggests spherical symmetry rather than a defined cone orientation. The conversation highlights the need for further examples or resources to clarify the relationship between acceleration and trajectory in this context. Ultimately, the inquiry emphasizes the complexity of deriving motion patterns from acceleration data.
Einstenio
Messages
2
Reaction score
1
Homework Statement
Show that a point with acceleration given by:
a=c*((dr/dt)×r)/|r|3
where c is a constant, moves on the surface of a cone.
Relevant Equations
v=dr/dt
This is jut an example to illustrate my doubt. I don't know how to obtain the tracjectory given only the acceleration in this format. I realized that if i can show that there is an constat vector 'a' that satisfy a•r=constant, than the motion would be on the surface of a cone. So i tried to make use of some vectorial identity multiplying by cross product on both sides and try to use the 'BAC-CAB' rule, but that didnt lead to anywhere.

Is there any example similar to this case or anywhere i can study to have a better understanding?
 
Physics news on Phys.org
Einstenio said:
if i can show that there is an constat vector 'a' that satisfy a•r=constant, than the motion would be on the surface of a cone.
Seems to me that would be motion in a plane normal to ##\vec a##.
 
##\ddot{\vec r}=c\frac{\dot{\vec r}\times\vec r}{|r|^3}##?
Seems most unlikely that would give a cone. A cone's axis has an orientation in space, whereas that equation appears to have spherical symmetry.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top