MPPT analysis in parallel and series configration with similar solar modules

AI Thread Summary
The discussion focuses on analyzing the performance of Maximum Power Point Trackers (MPPT) with two solar modules rated at 85W. The user seeks guidance on the benefits and methodologies for connecting the modules in series versus parallel configurations. It is noted that connecting in parallel increases current while maintaining voltage, whereas series connections increase voltage with constant current. The efficiency of configurations is influenced by factors like battery voltage compatibility and the impact of partial shading, with series connections generally offering advantages in these scenarios. Overall, the choice of configuration can significantly affect the efficiency and performance of solar energy systems.
zubairmehmood
Messages
4
Reaction score
0
hello!
Hope you all will be at quiet ease.
I am looking for the guidance to observe the performance analysis of MPPT (Maximum power point Tracker) in parallel and series configuration with similar solar modules. I have two solar modules each having the following rating:

- Maximum power (PMax) = 85W
- Open Circuit Voltage (Voc) = 21.96V
- Short Circuit Current (Isc) = 5.11A
- Rated voltage (Vmpp) = 18.29V
- Rated Current (Impp) = 4.65A
- Maximum System voltage = 1000V

Can anyone of you help in this regard that what methodology should be adopted and what parameters are required to be calculated for above said task.

Thanking you in anticipation.
 
Engineering news on Phys.org
zubairmehmood said:
hello!
Hope you all will be at quiet ease.
I am looking for the guidance to observe the performance analysis of MPPT (Maximum power point Tracker) in parallel and series configuration with similar solar modules. I have two solar modules each having the following rating:

- Maximum power (PMax) = 85W
- Open Circuit Voltage (Voc) = 21.96V
- Short Circuit Current (Isc) = 5.11A
- Rated voltage (Vmpp) = 18.29V
- Rated Current (Impp) = 4.65A
- Maximum System voltage = 1000V

Can anyone of you help in this regard that what methodology should be adopted and what parameters are required to be calculated for above said task.

Thanking you in anticipation.

Welcome to the PF!

There is a short introductory article at wikipedia, with a couple reference links to follow:

http://en.wikipedia.org/wiki/Maximum_power_point_tracker

.
 
dear berkeman thanks for your quick response. in fact i want to know what will be the benefit of analyzing the two panels in series and parallel configurations because we know that whenever these panels will be connected in parallel the current will increase and voltages will remain same and in series I is same V will increase as it is a general rule. I am a newbie in this solar field i have understood that the configuration which provide you more current flow is efficient (your comments needed). what can be the other efficiency parameters that can be measured with series parallel configuration in which efficiency can be better in other case.

thanks
 
If your battery is 12 Volts, it is usually better to have at least twice the nominal (12V)
voltage rating of photovoltaics (Solar panels) coming into the MPPT controller.
This is because the Vmp of the modules can get so close to the battery voltage
that there is just not much voltage headroom to do much good. Also, there will
be less PV wire losses because of the lower current, and mainly because
partial shading of the modules in series will not be as detrimental as wiring
them in parallel because even if partially shaded, the Vmp (max power point V)
will be above the battery voltage which is normally required for MPPT operation.
If the Vmp is below the battery voltage, then it just doesn't work very well at all.
Wiring PV in series will help this. Even though the MPPT controller is less
efficient at higher input voltages, the tradeoff is usually in your favor to wire
them in series rather than parallel. If lots of PV in the array, then, parallel
strings of solar modules in series.

boB
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top