MSD for Non-Ideal Gas: Derivation & Analysis

  • Thread starter Thread starter Mandelbroth
  • Start date Start date
  • Tags Tags
    Gas
AI Thread Summary
The discussion centers on the derivation of the Maxwell Speed Distribution (MSD) for non-ideal gases, highlighting the formula and its transformation through the ideal gas law and Van der Waals equation. Participants debate the application of the Maxwell-Boltzmann distribution, clarifying that while it traditionally applies to ideal gases, its principles may extend to solids and liquids under certain conditions. There is confusion regarding the distinction between the Maxwell Speed Distribution and the Maxwell-Boltzmann distribution, with some sources suggesting they are equivalent under specific circumstances. The conversation emphasizes the importance of thermal equilibrium and classical treatment in applying these distributions across different phases of matter. Overall, the discussion reflects ongoing exploration of statistical mechanics and its implications for gas behavior.
Mandelbroth
Messages
610
Reaction score
24
I've been thinking again. The formula for the Maxwell Speed Distribution for a non-ideal gas is \displaystyle f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{\frac{3}{2}} v^2 e^{\frac{-Mv^2}{2RT}}.

My derivation follows as such:

\displaystyle f(v) = 4\pi \left(\frac{m}{2\pi nRT}\right)^{\frac{3}{2}} v^2 e^{\frac{-mv^2}{2nRT}}, where m is the mass of the gas and n is the number of moles.

\displaystyle f(v) = 4\pi \left(\frac{m}{2\pi P_{ideal}V_{ideal}}\right)^{\frac{3}{2}} v^2 e^{\frac{-mv^2}{2P_{ideal}V_{ideal}}}, by the ideal gas law.

\displaystyle f(v) = 4\pi \left(\frac{m}{2\pi (P + \frac{an^2}{V^2})(V-nb)}\right)^{\frac{3}{2}} v^2 e^{\frac{-mv^2}{2(P + \frac{an^2}{V^2})(V-nb)}}, through the Van der Waals equation.

Factoring, we get \displaystyle f(v) = 4\pi \left(\frac{mV^2}{2\pi (PV^3-nbPV^2+an^2V-abn^3)}\right)^{\frac{3}{2}} v^2 e^{\frac{-mv^2}{2(PV^3-nbPV^2+an^2V-abn^3)}}.

As ridiculous as it looks, it probably isn't ridiculous enough. Would this work for modeling a non-ideal gas?
 
Physics news on Phys.org
The maxwell Boltzmann distribution is actually very general. It applies to any classical system that is at thermal equilibrium. It even applies to solid and liquid phases.
 
Jorriss said:
The maxwell Boltzmann distribution is actually very general. It applies to any classical system that is at thermal equilibrium. It even applies to solid and liquid phases.

Maxwell Speed Distribution. Not the Maxwell-Boltzmann distribution. Apparently, they are two different distributions. The Maxwell-Boltzmann is given by \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3}, where a is a scale parameter.

Even then, Maxwell-Boltzmann applies to gases with free-moving particles that do not interact and experience completely elastic collisions (id est, ideal gases). It doesn't apply to solids and liquids.
 
Mandelbroth said:
It doesn't apply to solids and liquids.
I'm fairly certain as long as the canonical position and momenta are uncoupled, it applies to solids and liquids. Do you know any statistical mechanics?
 
Jorriss said:
I'm fairly certain as long as the canonical position and momenta are uncoupled, it applies to solids and liquids. Do you know any statistical mechanics?
A bit. I would not, however, consider myself an expert at it.

Going back to its application to solids and liquids, a quick Google search yields multiple sources that are saying that it only applies to ideal gases. Then again, a couple of these sources are saying that the Maxwell Speed Distribution and the Maxwell-Boltzmann Distribution are the same, which may indicate that if you multiply the Maxwell-Boltzmann by the total amount of substance, there is some value of a such that they are equal.
 
Last edited:
Mandelbroth said:
A bit. I would not, however, consider myself an expert at it.

Going back to its application to solids and liquids, a quick Google search yields multiple sources that are saying that it only applies to ideal gases. Then again, a couple of these sources are saying that the Maxwell Speed Distribution and the Maxwell-Boltzmann Distribution are the same, which I'm almost positive is wrong...
From statistical mechanics one has, P(p,q) = exp(-BH)/Q.

If momenta and position are uncoupled (ie H = g(p) + w(q) )then Q = QtransQconfigurational.

The marginal probability distribution for momenta is P(p,q) where you integrate out position. p(p) = exp(-Bg(p))/Qtrans.

So the maxwell Boltzmann distribution applies regardless of phase - as long as the system can be treated classically and obeys a Boltzmann distribution ie thermally equilibrated.
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top