MHB Multiple choice question about electric fields and magnetic fields

AI Thread Summary
In a region with a 25-volt-per-meter electric field and a 15-millitesla magnetic field, an electron moves at a 20-degree angle relative to the magnetic field, experiencing a force of 5 × 10^-18 Newtons. The Lorentz force equation is applied to analyze the situation, combining the effects of the electric and magnetic fields. The relationship between the force, electric field, magnetic field, and electron speed is established through the equation F = -e(E + v × B). By substituting the known values into the derived formula for speed, the calculation yields the electron's velocity. The correct speed of the electron is determined to be 10.46 km/s.
AztecChaze
Messages
1
Reaction score
0
Consider a region where a 25-volt-per-meter electric field and a 15-millitesla magnetic field exist and are along the same direction. If the electron is in the said region, is moving at a direction 20 degrees counter-clockwise from the direction of the magnetic field, and is experiencing a total force of 5 × 10-18 Newtons, determine the speed of the electron. Assume the velocity vector, the electric field, and the magnetic field are all lying on the same plane.

a.) 10.46 km/s
b.) 1.32 km/s
c.) 3.65 km/s
d.) 5.20 km/s
 
Mathematics news on Phys.org
By the Lorentz law, the electromagnetic force is given by $\mathbf{F} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$, where $e$ is the elementary charge, equal to $1.6 \times 10^{-19} C$. Since the electric and magnetic fields point in the same direction, we may suppose that they are in the $x$-direction. Then $\mathbf{v} \times \mathbf{B}$ points in the negative z-direction and has magnitude $vB\sin(20^\circ)$. Therefore $\mathbf{F} = -e(E\,\mathbf{\hat{x}} - vB\sin(20^\circ)\,\mathbf{\hat{z}})$. Taking the square of the magnitude on both sides of the vector equation yields $F^2 = e^2[E^2 + (vB \sin 20^\circ)^2]$. Solving for $v$ results in $$v = \frac1{B\sin20^\circ}\sqrt{\left(\frac{F}{e}\right)^2 - E^2}$$ Plug in the given values of $F$, $E$ and $B$ into this formula to determine the answer.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top