[MultiVarCalc] Find the mass of the solid

Click For Summary
SUMMARY

The discussion focuses on calculating the mass of a solid bowl defined by the paraboloid equation \( z = a(x^2 + y^2) \) for \( 0 \leq z \leq H \) with a mass density of \( \rho(x, y, z) = z \). The mass is derived using triple integrals in cylindrical coordinates, resulting in the formula \( m = \frac{H^3}{2a} \). A clarification is made regarding the shape of the solid, confirming it is a paraboloid and not a cone, which is crucial for accurate calculations.

PREREQUISITES
  • Cylindrical coordinates
  • Triple integrals
  • Understanding of mass density functions
  • Basic calculus and integration techniques
NEXT STEPS
  • Study the application of triple integrals in different coordinate systems
  • Learn about mass density functions and their implications in physics
  • Explore the properties of paraboloids and their geometric interpretations
  • Investigate the differences between paraboloids and cones in mathematical modeling
USEFUL FOR

Students in calculus, physics enthusiasts, and anyone involved in mathematical modeling of three-dimensional objects, particularly in the context of mass and density calculations.

bornofflame
Messages
56
Reaction score
3

Homework Statement


Let ##a > 0##. Find the mass of the "solid bowl" consisting of points inside the paraboloid ##z=a(x^2+y^2) \text { for } 0\leq z \leq H \text{. Assume a mass density of } \rho(x, y, z) = z##.

Homework Equations


##x^2 + y^2 = z^2##

The Attempt at a Solution


math263_review5.jpg
[/B]
mass = ##m =\int_W \rho(x, y, z)\, dV = \int \int \int \rho(x,y,z) dV = \int \int \int zr\, dz\, dr\, d\theta##
boundaries: ##0 \leq z \leq H;~ 0 \leq r \leq \sqrt \frac H a;~ 0 \leq \theta \leq 2\pi##
##m = \int_0^{2\pi} \int_0^{\sqrt \frac H a} \int_0^H zr\,dz\,dr\,d\theta##
##= \int_0^{2\pi} \int_0^{\sqrt \frac H a} \frac 1 2 z^2r\left. \right|_0^H \,dr \,d\theta##
##=\frac 1 2 \int_0^{2\pi} \int_0^{\sqrt \frac H a} H^2r \,dr \,d\theta##
##= \frac 1 2 \int_0^{2\pi} \frac 1 2 H^2r^2\left. \right|_0^{\sqrt \frac H a}\, d\theta##
##= \frac 1 4 \int_0^{2\pi}| H^2(\sqrt \frac H a)^2\, d\theta##
##= \frac 1 4 \int_0^{2\pi} H^2(\frac H a)\, d\theta##
##= \frac 1 4 \int_0^{2\pi} \frac {H^3} a \,d\theta##
##= \frac 1 4 \frac {H^3} a \theta \left. \right|_0^{2\pi}##
##= \frac {H^3} {4a} 2\pi##
##= \frac {H^3} {2a}##
 

Attachments

  • math263_review5.jpg
    math263_review5.jpg
    1.2 MB · Views: 851
Last edited:
Physics news on Phys.org
bornofflame said:

Homework Statement


Let ##a > 0##. Find the mass of the "solid bowl" consisting of points inside the paraboloid ##z=a(\sqrt{x^2+y^2)} \text { for } 0\leq z \leq H \text{. Assume a mass density of } \rho(x, y, z) = z##.
That equation isn't a paraboloid. It is a cone. Which do you want?

Homework Equations


##x^2 + y^2 = z^2##

The Attempt at a Solution


View attachment 225683 [/B]
mass = ##m =\int_W \rho(x, y, z)\, dV = \int \int \int \rho(x,y,z) dV = \int \int \int zr\, dz\, dr\, d\theta##
boundaries: ##0 \leq z \leq H;~ 0 \leq r \leq \sqrt \frac H a;~ 0 \leq \theta \leq 2\pi##
##m = \int_0^{2\pi} \int_0^{\sqrt \frac H a} \int_h^H zr\,dz\,dr\,d\theta##

What is ##h##? And in the step below you change it to ##0##. That isn't correct in any case.

##= \int_0^{2\pi} \int_0^{\sqrt \frac H a} \frac 1 2 z^2r\left. \right|_0^H \,dr \,d\theta##
##=\frac 1 2 \int_0^{2\pi} \int_0^{\sqrt \frac H a} H^2r \,dr \,d\theta##
##= \frac 1 2 \int_0^{2\pi} \frac 1 2 H^2r^2\left. \right|_0^{\sqrt \frac H a}\, d\theta##
##= \frac 1 4 \int_0^{2\pi}| H^2(\sqrt \frac H a)^2\, d\theta##
##= \frac 1 4 \int_0^{2\pi} H^2(\frac H a)\, d\theta##
##= \frac 1 4 \int_0^{2\pi} \frac {H^3} a \,d\theta##
##= \frac 1 4 \frac {H^3} a \theta \left. \right|_0^{2\pi}##
##= \frac {H^3} {4a} 2\pi##
##= \frac {H^3} {2a}##
 

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K