- #1

letalea

- 8

- 0

## Homework Statement

Let x=x^2ysin(u)tan(v), where x(u,v) and y(u,v) are smooth functions that, when evaluated at u=1 and v=-3 satisfy

x=2.112, y=4.797, [tex]\partial[/tex]x/[tex]\partial[/tex]u = -3.491, [tex]\partial[/tex]x/[tex]\partial[/tex]v = -2.230 , [tex]\partial[/tex]y/[tex]\partial[/tex]u = 1.787 , [tex]\partial[/tex]y/[tex]\partial[/tex]v = 1.554.

Then the value of [tex]\partial[/tex]z/[tex]\partial[/tex]u + ln ( [tex]\partial[/tex]z/[tex]\partial[/tex]v), at u =1, v= -3 is one of the following:

9.004

-1.225

-3.257

3.896

6.469

-2.368

-9.311

-3.658

## The Attempt at a Solution

[tex]\partial[/tex]z/[tex]\partial[/tex]u= (2(2.112)(4.797)sin(1)tan(-3))(-3.491) + (2.112^2 sin(1)tan(2.112))(1.787) = 0.057407948

[tex]\partial[/tex]z/[tex]\partial[/tex]v=(2(2.112)(4.797)sin(1)tan(-3))(-2.230) + (2.112^2 sin(1)tan(-3))(1.554) = 0.034988483

0.057407948 + ln(0.034988483) = -3.295

The answer, which you can tell, is not even a solution on the list of possible answers. Any insight to where I went wrong would be appreciated! Thanks in advance!