Muon Catalyzed Fusion: How Does It Work?

  • Thread starter Thread starter AbsoluteZer0
  • Start date Start date
  • Tags Tags
    Fusion Muon
AbsoluteZer0
Messages
124
Reaction score
1
Hi,

I came across Muon Catalyzed Fusion while on my physics-researching rampage. How does \mucf take place? Is it that the muon that replaces the electron draws in other nuclei? Does it have anything to do with electronegativity?

Thanks,
 
Physics news on Phys.org
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top