- 4,662
- 372
i don't quite understand the derivation of mutual electrostatic energy of two charged system:
U_12=\frac{1}{4\pi}\intE_1(dot)E_2dV=-\frac{1}{4\pi}\intE_1(dot)\nebla\phi_2 dV= \frac{1}{4\pi}\int \phi_2(dot)\nebla(dot)E_1=\int \phi_2*\rho_1dV
i undersantd that we are using here: (1)=\nebla(\phi<b>E</b>)=<b>E</b>(dot)\nebla\phi+\phi*\nebla(dot)<b>E</b>
but why then (1)=0 here?
thanks.
U_12=\frac{1}{4\pi}\intE_1(dot)E_2dV=-\frac{1}{4\pi}\intE_1(dot)\nebla\phi_2 dV= \frac{1}{4\pi}\int \phi_2(dot)\nebla(dot)E_1=\int \phi_2*\rho_1dV
i undersantd that we are using here: (1)=\nebla(\phi<b>E</b>)=<b>E</b>(dot)\nebla\phi+\phi*\nebla(dot)<b>E</b>
but why then (1)=0 here?
thanks.