MHB My First Algebra Question: Associative Property

Duckfan
Messages
14
Reaction score
0
I am reading through a introductory algebra textbook and refreshing memory on this topic. In the matter of the Associative Properties, it is giving me the expression 3 + (8+x).

(I'm skipping the graphs section because I'm leaving that for my tutor Saturday. But I'm moving to algebra because I think I can refresh memory fairly quickly).

Now this is addition in this part of the book. However, I'm just a bit confused because I do remember some of my algebra where in this expression I would multiply 3 into 8 since it's part of (forgot the term) process to solve this equation which (in my memory) multiply 3 & 8 to get 24x. Anytime I deal with an expression (for example) 4 + (7x+10) would work out to 28x +10. Because it's in the ( ) I'm required to multiply the expression inside the ( ).

And it also states I need to change the order: 3 + (x +8). Not understanding this aspect.

Am I correct on this question or do I need to clarify more?
 
Last edited:
Mathematics news on Phys.org
Re: My FIrst Algebra Question

Duckfan said:
I am reading through a introductory algebra textbook and refreshing memory on this topic. In the matter of the Associative Properties, it is giving me the expression 3 + (8+x).

(I'm skipping the graphs section because I'm leaving that for my tutor Saturday. But I'm moving to algebra because I think I can refresh memory fairly quickly).

Now this is addition in this part of the book. However, I'm just a bit confused because I do remember some of my algebra where in this expression I would multiply 3 into 8 since it's part of (forgot the term) process to solve this equation which (in my memory) multiply 3 & 8 to get 24x. Anytime I deal with an expression (for example) 4 + (7x+10) would work out to 28x +10. Because it's in the ( ) I'm required to multiply the expression inside the ( ).

And it also states I need to change the order: 3 + (x +8). Not understanding this aspect.

Am I correct on this question or do I need to clarify more?

No you are missing the fact that the 3 is added to and not multiplied against the result of the bracket. The only way you'd multiply the three (3) from your first example or the four (4) from your second against the brackets is if the addition was replaced by a multiplication sign (*) or not present.

i.e. $$3 + ( x + 8) \ne 3 * (x + 8) $$ and $$4 + (7x + 10) \ne 4 * (7x + 10)$$

Associative property of math means that the order in which the operations are done is not relevant. Addition is associative since the order you add numbers together does not affect the result. For example if you have 4 + 7 + 2 it doesn't matter if I force the addition to be (4 + 7) + 2 or 4 + (7 + 2) the result will be the same.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top