╔(σ_σ)╝
- 838
- 2
Homework Statement
f : X \rightarrow Y , g : Y \rightarrow Z and B \subset Z
Prove that
\left(g \circ f\right)^{-1}\left(B \right) = f^{-1} \left({g^{-1} \left(B\right)\right).What is wrong with this proof ?
The Attempt at a Solution
x_{0} \in \left(g \circ f\right)^{-1}\left(B\right) \Rightarrow g \left(f\left(x_{0} \right)\right)\in B \Rightarrow f \left(x_{0}\right) \in g^{-1} \left(B\right)
f \left(x_{0} \right) \in g^{-1} \left(B\right) \Rightarrow x_{0} \in f^{-1} \left(g^{-1} \left(B \right) \right)
Thus,
\left(g \circ f\right)^{-1}\left(B \right) \subset f^{-1} \left({g^{-1} \left(B \right)\right).
I feel uneasy about the proof. I believe my inferences are correct but there is something unsettling about what I did.
Part 2.
Suppose x_{0} \in f^{-1}\left(g^{-1}\left(B\right)\right)
x_{0}\in f^{-1}\left(g^{-1} \left(B\right)\right) \Rightarrow f \left(x_{0}\right) \in g^{-1}\left(B\right) \Rightarrow g\left(f\left(x_{0}\right)\right) \in B
g \left(f \left(x_{0} \right) \right) \in B \Rightarrow x_{0} \in \left(g \circ f\right)^{-1} \left(B \right)
Thus,
f^{-1} \left({g^{-1} \left(B\right)\right) \subset \left(g \circ f\right)^{-1}\left(B\right).
Therefore,
\left(g\circ f\right)^{-1}\left(B\right) = f^{-1}\left({g^{-1}\left(B\right)\right).Some feedback would be appreciated. I would like to know if this proof is valid and good enough.
Last edited: