MHB My TOP Favorite Polynomial Challenge

AI Thread Summary
The discussion centers around a challenging polynomial equation involving rational expressions and a quadratic equation. Participants express enthusiasm for the problem, highlighting its complexity and appeal. The equation to solve is presented as a combination of fractions equating to a quadratic expression. The goal is to find the largest solution, denoted as \(x_1\). Overall, the thread emphasizes the problem's quality and the enjoyment it brings to those tackling it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Like I mentioned in the title, this is probably one of the greatest challenge problems (I've seen so far) that designed for, hmm, well, for a challenge!:o

Let $x_1$ be the largest solution to the equation

$\dfrac{6}{x-6}+ \dfrac{8}{x-8}+\dfrac{20}{x-20}+\dfrac{22}{x-22}=x^2-14x-4$

Find the exact value of $x_1$.
 
Mathematics news on Phys.org
great question

add 1 to each term onLHS and so 4 to RHS to get

$\dfrac{x}{x-6} + \dfrac{x}{x-8} + \dfrac{x}{x-20} + \dfrac{x}{x-22} = x^2-14x$

so one solution is x = 0 and further we deviding by x we get

$\dfrac{1}{x-6} + \dfrac{1}{x-8} + \dfrac{1}{x-20} + \dfrac{1}{x-22} = x-14$

put y = x - 14 to get

$\dfrac{1}{y+8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} + \dfrac{1}{y-8} = y$

or

$\dfrac{1}{y+8} + \dfrac{1}{y-8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} = y$

or

$\dfrac{2y}{y^2-64} + \dfrac{2y}{y^2-36} = y$

so y = 0

or

$\dfrac{2}{y^2-64} + \dfrac{2}{y^2-36} = 1$

or

$2((y^2-36) + y^2-64))= (y^2-36)(y^2-64)$

or $2((2y^2-100))= (y^2-36)(y^2-64)= y^4-100y^2+ 36 *64$

or $y^4- 104y^2+48^2+200=0$

or(y^2-52)^2 = 200

$y^2 = 52 \pm 10\sqrt{2}$

we should take the higher of the 2 and add 14 to get the largest x or $x = 14 + \sqrt{52+10\sqrt{2}}$ as y = x- 14
 
Well done, kaliprasad!(Yes) Thanks for agreeing with me that this is a great problem(:o) and thanks for participating!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

2
Replies
93
Views
15K
2
Replies
61
Views
11K
3
Replies
114
Views
11K
2
Replies
60
Views
11K
2
Replies
67
Views
11K
2
Replies
86
Views
13K
2
Replies
52
Views
12K
4
Replies
150
Views
19K
Back
Top