MHB My TOP Favorite Polynomial Challenge

AI Thread Summary
The discussion centers around a challenging polynomial equation involving rational expressions and a quadratic equation. Participants express enthusiasm for the problem, highlighting its complexity and appeal. The equation to solve is presented as a combination of fractions equating to a quadratic expression. The goal is to find the largest solution, denoted as \(x_1\). Overall, the thread emphasizes the problem's quality and the enjoyment it brings to those tackling it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Like I mentioned in the title, this is probably one of the greatest challenge problems (I've seen so far) that designed for, hmm, well, for a challenge!:o

Let $x_1$ be the largest solution to the equation

$\dfrac{6}{x-6}+ \dfrac{8}{x-8}+\dfrac{20}{x-20}+\dfrac{22}{x-22}=x^2-14x-4$

Find the exact value of $x_1$.
 
Mathematics news on Phys.org
great question

add 1 to each term onLHS and so 4 to RHS to get

$\dfrac{x}{x-6} + \dfrac{x}{x-8} + \dfrac{x}{x-20} + \dfrac{x}{x-22} = x^2-14x$

so one solution is x = 0 and further we deviding by x we get

$\dfrac{1}{x-6} + \dfrac{1}{x-8} + \dfrac{1}{x-20} + \dfrac{1}{x-22} = x-14$

put y = x - 14 to get

$\dfrac{1}{y+8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} + \dfrac{1}{y-8} = y$

or

$\dfrac{1}{y+8} + \dfrac{1}{y-8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} = y$

or

$\dfrac{2y}{y^2-64} + \dfrac{2y}{y^2-36} = y$

so y = 0

or

$\dfrac{2}{y^2-64} + \dfrac{2}{y^2-36} = 1$

or

$2((y^2-36) + y^2-64))= (y^2-36)(y^2-64)$

or $2((2y^2-100))= (y^2-36)(y^2-64)= y^4-100y^2+ 36 *64$

or $y^4- 104y^2+48^2+200=0$

or(y^2-52)^2 = 200

$y^2 = 52 \pm 10\sqrt{2}$

we should take the higher of the 2 and add 14 to get the largest x or $x = 14 + \sqrt{52+10\sqrt{2}}$ as y = x- 14
 
Well done, kaliprasad!(Yes) Thanks for agreeing with me that this is a great problem(:o) and thanks for participating!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

2
Replies
93
Views
15K
2
Replies
61
Views
11K
3
Replies
114
Views
10K
2
Replies
60
Views
11K
2
Replies
67
Views
11K
2
Replies
86
Views
13K
2
Replies
52
Views
12K
4
Replies
150
Views
19K
Back
Top