MHB My TOP Favorite Polynomial Challenge

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Like I mentioned in the title, this is probably one of the greatest challenge problems (I've seen so far) that designed for, hmm, well, for a challenge!:o

Let $x_1$ be the largest solution to the equation

$\dfrac{6}{x-6}+ \dfrac{8}{x-8}+\dfrac{20}{x-20}+\dfrac{22}{x-22}=x^2-14x-4$

Find the exact value of $x_1$.
 
Mathematics news on Phys.org
great question

add 1 to each term onLHS and so 4 to RHS to get

$\dfrac{x}{x-6} + \dfrac{x}{x-8} + \dfrac{x}{x-20} + \dfrac{x}{x-22} = x^2-14x$

so one solution is x = 0 and further we deviding by x we get

$\dfrac{1}{x-6} + \dfrac{1}{x-8} + \dfrac{1}{x-20} + \dfrac{1}{x-22} = x-14$

put y = x - 14 to get

$\dfrac{1}{y+8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} + \dfrac{1}{y-8} = y$

or

$\dfrac{1}{y+8} + \dfrac{1}{y-8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} = y$

or

$\dfrac{2y}{y^2-64} + \dfrac{2y}{y^2-36} = y$

so y = 0

or

$\dfrac{2}{y^2-64} + \dfrac{2}{y^2-36} = 1$

or

$2((y^2-36) + y^2-64))= (y^2-36)(y^2-64)$

or $2((2y^2-100))= (y^2-36)(y^2-64)= y^4-100y^2+ 36 *64$

or $y^4- 104y^2+48^2+200=0$

or(y^2-52)^2 = 200

$y^2 = 52 \pm 10\sqrt{2}$

we should take the higher of the 2 and add 14 to get the largest x or $x = 14 + \sqrt{52+10\sqrt{2}}$ as y = x- 14
 
Well done, kaliprasad!(Yes) Thanks for agreeing with me that this is a great problem(:o) and thanks for participating!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

2
Replies
93
Views
14K
2
Replies
61
Views
11K
3
Replies
114
Views
10K
2
Replies
60
Views
11K
2
Replies
67
Views
11K
2
Replies
86
Views
13K
2
Replies
52
Views
12K
4
Replies
150
Views
19K
Back
Top