I Necessary and sufficient x^3=1

  • I
  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
AI Thread Summary
The equation x^3=1 has three distinct solutions: x=1, x=ω, and x=ω^2, where ω represents the complex cube roots of unity. The cube root function is not single-valued, leading to a one-to-many mapping, which is why x^3=1 does not imply x=1 exclusively. Instead, the correct logical expression is x^3=1 if and only if x equals one of the three roots. The discussion highlights the importance of understanding complex multiplication and the representation of complex numbers on the unit circle for finding all solutions. Thus, polynomials can be fully analyzed over the complex numbers, revealing all roots through their geometric interpretation.
Mr Davis 97
Messages
1,461
Reaction score
44
So we have ##x^3=1##. I have a really simple question. Why isn't it true that ##x^3 = 1## if and only if ##x = 1##, when we consider that if we take cube root of both sides and we can then take the cube again? Of course there are two other complex roots, but what am I missing in my naive logical argument?
 
Mathematics news on Phys.org
The cube root is not a function, as it is a one-to-many mapping, in fact one-to-three. So taking the cube root of both sides gives three separate equations, not one: ##x=1,\ x=\omega## and ##x=\omega^2##, where ##\omega=e^{2\pi/3}##.

Expressed in formal logic, we have
$$x^3=1 \Leftrightarrow (x=1\vee x=\omega\vee x=\omega^2)$$

Given the properties of ##\vee## (OR), this allows us to deduce that
$$x=1\Rightarrow x^3=1$$
but not that
$$x^3=1 \Rightarrow x=1$$
 
andrewkirk said:
The cube root is not a function, as it is a one-to-many mapping, in fact one-to-three. So taking the cube root of both sides gives three separate equations, not one: ##x=1,\ x=\omega## and ##x=\omega^2##, where ##\omega=e^{2\pi/3}##.

Expressed in formal logic, we have
$$x^3=1 \Leftrightarrow (x=1\vee x=\omega\vee x=\omega^2)$$

Given the properties of ##\vee## (OR), this allows us to deduce that
$$x=1\Rightarrow x^3=1$$
but not that
$$x^3=1 \Rightarrow x=1$$
I think I see. So with square roots, ##+ \sqrt[2]{x}## is the principal square root which defines a function, while ##\pm \sqrt[2]{x}## is the value of both roots. So analogously ##\sqrt[3]{x}## is the principal cube root, while... What's the analogous way of retrieving the two complex roots easily?
 
^the n solutions of $$x^n=y$$ are
##exp(2k \pi i /n)\sqrt[n]{y}##
for
k=0,1,...,n-2,n-1

thus the complex cube roots of a positive real y are
##exp(2 \pi i /n)\sqrt[n]{y}=\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)\sqrt[n]{y}##
and
##exp(4 \pi i /n)\sqrt[n]{y}=\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)\sqrt[n]{y}##
 
Mr Davis 97 said:
What's the analogous way of retrieving the two complex roots easily?
Polynomials split over the complex numbers. So we have to look at complex multiplication. If we represent complex numbers as points in the plane, then multiplication means to multiply the real length of two numbers (= distance to the origin), and add there angles (= towards the real axis). This means in return, that numbers of length one are all on the unit circle, and multiplication of those is adding angles, i.e. in order to solve ##x^n=x \cdot \ldots \cdot x = 1##, we have to divide the unit circle in ##n## equal angles and all possible ##x## are those points on the circle which @lurflurf listed.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
22
Views
2K
Replies
9
Views
11K
Replies
14
Views
2K
Replies
13
Views
2K
Replies
45
Views
5K
Replies
2
Views
1K
Back
Top