Necessity of bi-invariant metric for Yang-Mill's theory.

  • Thread starter Thread starter center o bass
  • Start date Start date
  • Tags Tags
    Metric Theory
center o bass
Messages
545
Reaction score
2
The action for Yang-Mill's theory is often written as
$$ S= \int \frac{1}{4}\text{Tr} (F^{\mu \nu} F_{\mu \nu})d^4 x = \int d^4 x\frac{1}{4} F^{k \mu \nu} F_{k \mu \nu}$$
where latin indices are indicies in the lie algebra, and the trace is taken with respect to the inner product ##\delta_{kl}##. The great thing about this inner product is that it is ad-invariant. I.e. when a gauge transformation is performed ##F\to g F g^{-1}## and
$$\text{Tr} (F^{\mu \nu} F_{\mu \nu}) \to \text{Tr} (g F^{\mu \nu} F_{\mu \nu}g^{-1}) = \text{Tr} (F^{\mu \nu} F_{\mu \nu})$$.

We could imagine implementing more general inner products ##g_{ij}## with the action
$$ S= \int \frac{1}{4} g_{kl} F^{k \mu \nu}, F_{\mu \nu}^l d^4 x$$
that is in general not bi-invariant. Am I wrong that this would destroy the gauge invariance of yang-mills theory? I.e. that gauge theory requires a bi-invariant inner product on ##\mathfrak g##?
 
Physics news on Phys.org
Under a gauge transformation, we have

F_{\mu\nu} \to g F_{\mu\nu} g^{-1}
and hence

F^{\mu\nu} F_{\mu\nu} \to g F^{\mu\nu} F_{\mu\nu} g^{-1}
so yes, gauge invariance of the action requires using the bi-invariant metric.
 
center o bass said:
The action for Yang-Mill's theory is often written as
$$ S= \int \frac{1}{4}\text{Tr} (F^{\mu \nu} F_{\mu \nu})d^4 x = \int d^4 x\frac{1}{4} F^{k \mu \nu} F_{k \mu \nu}$$
where latin indices are indicies in the lie algebra, and the trace is taken with respect to the inner product ##\delta_{kl}##. The great thing about this inner product is that it is ad-invariant. I.e. when a gauge transformation is performed ##F\to g F g^{-1}## and
$$\text{Tr} (F^{\mu \nu} F_{\mu \nu}) \to \text{Tr} (g F^{\mu \nu} F_{\mu \nu}g^{-1}) = \text{Tr} (F^{\mu \nu} F_{\mu \nu})$$.

We could imagine implementing more general inner products ##g_{ij}## with the action
$$ S= \int \frac{1}{4} g_{kl} F^{k \mu \nu}, F_{\mu \nu}^l d^4 x$$
that is in general not bi-invariant. Am I wrong that this would destroy the gauge invariance of yang-mills theory? I.e. that gauge theory requires a bi-invariant inner product on ##\mathfrak g##?

See page 12, sec. 4 of the PDF in
https://www.physicsforums.com/showpost.php?p=4238251&postcount=1

Sam
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top