MHB Need formula for solving ellipse radius with equal spacing points

sharplens
Messages
2
Reaction score
0
I'm trying to build an oval bicycle wheel and need a formula to calculate the radii so that I can use the results to calculate the length for each spoke. See diagram for details. Hope someone can help.

View attachment 8645
 

Attachments

  • ellipse_equal_spaced_points.jpg
    ellipse_equal_spaced_points.jpg
    15.9 KB · Views: 132
Mathematics news on Phys.org
Jello, and welcome to MHB! (Wave)

I think what I would do is use a parametric representation of the given ellipse:

$$x(t)=r_{10}\cos(t)$$

$$y(t)=r_{1}\sin(t)$$

And then:

$$r_n=\sqrt{\left(r_{10}\cos(t_n)\right)^2+\left(r_{1}\sin(t_n)\right)^2}$$

where:

$$t_n=\frac{\pi}{18}n$$ where $$n\in\{1,2,3,4,5,6,7,8,9\}$$

I am assuming the angular difference between the spokes is uniform. Are you instead wanting the distance along the ellipse between spokes to be uniform?
 
Hi sharplens, welcome to MHB! ;)

Do you want equi-parametrized, which is what Mark gave the formulas for?
View attachment 8646

Or equi-angular?
View attachment 8648

Or equi-distant?
View attachment 8647

Admittedly, Mark's formulas are the simplest and most straight forward.
 

Attachments

  • elliptic_spokes_equiparam.png
    elliptic_spokes_equiparam.png
    7.8 KB · Views: 122
  • elliptic_spokes_equiangle.png
    elliptic_spokes_equiangle.png
    8.5 KB · Views: 120
  • elliptic_spokes_equidist.png
    elliptic_spokes_equidist.png
    8.1 KB · Views: 105
I want equal distance along the arc. That's equivalent to the spoke holes on an oval bicycle rim. Thanks for the nice colorful graph. :)
 
sharplens said:
I want equal distance along the arc. That's equivalent to the spoke holes on an oval bicycle rim. Thanks for the nice colorful graph. :)
The method is a bit involved, so please bear with me.
Or jump to the end for the results. ;)Let $a$ be the length of the longest spoke $r_{10}$.
Let $b$ be the length of the shortest spoke $r_{1}$.

First we need to find the arc length of the 90 degree angle, which is:
$$\text{arclength} = \int_0^{\pi/2} s'(t)\,dt = \int_0^{\pi/2} \sqrt{a^2\sin^2 t + b^2\cos^2 t}\,dt$$

Then we need to divide it into 9 equal parts $\Delta s$ for the 10 spokes.
$$\Delta s = \frac 19 \text{arclength}$$

Next is to find the parameters $t_i$ ($i=1,...,10$) where the spokes are.
For that we need to solve:
$$t'(s) = \frac{1}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}$$
and find the values for $t$ where $s = (i-1)\Delta s$.

And finally we can calculate the lengths of the spokes $r_i$:
$$\text{length }r_i = \sqrt{a^2\cos^2 t_i + b^2\sin^2 t_i}$$I'm afraid we can only evaluate these formulas numerically.
If I do that for $a=r_{10}=3$ and $b=r_{1}=1$, I find an arc length of $3.3412$.
And the spoke lengths are:
$$r_i = 3.0000,\ 2.8572,\ 2.5909,\ 2.2981,\ 2.0020,\ 1.7146,\ 1.4479,\ 1.2202,\ 1.0595,\ 1.0000$$
 
I found a couple of interesting articles about the Elliptic integrals of the first and second kind, and how we can deal with arc length along the ellipse here.
It means we can simplify the formulas a bit, and look up the results with online tools that are readily available.

$$\text{arclength quarter ellipse} = b\cdot E(1-\frac{a^2}{b^2})$$
where $E$ here is the so called complete elliptic integral of the second kind with parameter $m=k^2$.
The free online Wolfram|Alpha can calculate this for us with [M]b * EllipticE[1 - a^2 / b^2][/M].
Applied to the example you can see here on W|A that the result is indeed $3.3412$.To find the $t_i$ we need to solve:
$$\text{arclength}(t) = b\cdot E(t \mid 1-\frac{a^2}{b^2}) = s$$
where this time $E$ is the incomplete elliptic integral of the second kind, and $s$ is the arc length up to the spoke.

Wolfram|Alpha can do this for us with [M]FindRoot[b * EllipticE[t, 1 - a^2 / b^2] == s][/M].
Applied to spoke 9 of the example, you can see here on W|A that the result is $t_9=0.3293$.Finally, the spoke length is:
$$r_i = \sqrt{a^2\cos^2 t_i + b^2\sin^2 t_i}$$
Applied to the same spoke W|A shows us that this is indeed $r_9=2.8572$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top