(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

What is the permutation matrix associated to the permutation of [itex]n[/itex] indices defined by [itex]p(i) = n - i + 1[/itex]? What is the cycle decomposition of [itex]p[/itex]? What is it's sign?

2. Relevant equations

Prop. A permutation matrix [itex]P[/itex] has a single 1 in each row and in each column, the rest of its entries being 0.

3. The attempt at a solution

I. So I'm a bit confused on how to find the matrix associated with [itex]p[/itex]. Here's my attempt:

Given [itex]p(i) = n - i + 1[/itex] defines a permutation of [itex]n[/itex] indices, then by our proposition, we know the associated matrix with [itex]p[/itex], say [itex]A[/itex], is an [itex]n \times n[/itex] matrix with a single 1 in each row and each column, the rest of its entries being 0. Therefore it is of the form:

[tex]A = \sum_i e_{p(i),i} = \sum_i e_{n-i+1,i}[/tex]

where [itex]e_{i,j}[/itex] denotes an [itex]n \times n[/itex] matrix with a single 1 in the i^{th}row and j^{th}column. From this we find that:

[tex]A = e_{n,1} + e_{n-1,2} + \cdots + e_{2,n-1} + e_{1,n}[/tex]

I guess I am a bit confused on whether I can deduce that [itex]A[/itex] is an [itex]n \times n[/itex] matrix from the fact that [itex]p[/itex] defines a permutation of [itex]n[/itex] indices. If so, does that mean I can sum [itex]i[/itex] from 1 to n in the formula above to find [itex]A[/itex]?

II. To find the cycle of decomposition of [itex]p[/itex], provided that my answer from I. is correct, would I just write:

[tex](n,1)(n-1,2) \cdots[/tex] ?

III. I'm not sure on how to determine the sign of [itex]A[/itex] seeing as it depends on the oddness or evenness of [itex]n[/itex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Need help finding permutation matrix

**Physics Forums | Science Articles, Homework Help, Discussion**