santa
- 18
- 0
\sqrt{2+\sqrt{3}}+\sqrt{4-\sqrt{7}}=\sqrt{5+\sqrt{21}}
That would mean invertingHurkyl said:You are thus trying to solve the linear equation ... Ax = 1
Krizalid said:\sqrt {2 + \sqrt 3 } = \frac{{\sqrt {4 + 2\sqrt 3 } }}<br /> {{\sqrt 2 }} = \frac{{\sqrt {\left( {1 + \sqrt 3 } \right)^2 } }}<br /> {{\sqrt 2 }} = \frac{{1 + \sqrt 3 }}<br /> {{\sqrt 2 }}.
In the same way \sqrt {4 - \sqrt 7 } = \frac{{\sqrt 7 - 1}}<br /> {{\sqrt 2 }}.
Finally \sqrt {2 + \sqrt 3 } + \sqrt {4 - \sqrt 7 } = \frac{{\sqrt 3 + \sqrt 7 }}<br /> {{\sqrt 2 }} = \frac{{\sqrt {10 + 2\sqrt {21} } }}<br /> {{\sqrt 2 }} = \sqrt {5 + \sqrt {21} } \quad\blacksquare