- #1
natasha d
- 19
- 0
Homework Statement
f[itex]_{n}[/itex] is is a sequence of functions in R, x[itex]\in[/itex] [0,1]
is f[itex]_{n}[/itex] uniformly convergent?
f = nx/1+n[itex]^{2}[/itex]x[itex]^{2}[/itex]
Homework Equations
uniform convergence [itex]\Leftrightarrow[/itex]
|f[itex]_{n}[/itex](x) - f(x)| < [itex]\epsilon[/itex] [itex]\forall[/itex] n>= n[itex]_{o}[/itex] [itex]\in[/itex]N
The Attempt at a Solution
lim f[itex]_{n}[/itex] = lim nx/1+n[itex]^{2}[/itex]x[itex]^{2}[/itex] = 0 if
n→∞ n→∞ x[itex]\in[/itex] [0,1)
= lim (1/n)(1/(n[itex]^{2}[/itex]x[itex]^{2}[/itex])=1) if x=1
n→∞
=0 as we sub x=1 and then sub the limit as 1/n = 0
hence seq converges to f(x) = 0, proving pointwise convergence
for uniform convergence we'll need a n[itex]_{o}[/itex] [itex]\in[/itex]N independant of x
|f[itex]_{n}[/itex](x) - f(x)|<ε
ie |nx/(1+n[itex]^{2}[/itex]x[itex]^{2}[/itex]) - 0|<ε
cant seem to manipulate the inequalities for an n