chinared
- 6
- 0
Need to find the Ricci scalar curvature of this metric:
ds2 = e2a(z)(dx2 + dy2) + dz2 − e2b(z)dt2I tried to find the solution, but failed to pass the calculation of Riemann curvature tensor:
<The Christoffel connection> Here a'(z) denotes the first derivative of a(z) respect to z.
\Gamma\stackrel{x}{xz}=\Gamma\stackrel{x}{zx}=a'(z)
\Gamma\stackrel{y}{yz}=\Gamma\stackrel{y}{zy}=a'(z)
\Gamma\stackrel{z}{tt}=b'(z)e2b(z)
\Gamma\stackrel{z}{xx}=\Gamma\stackrel{z}{yy}=-a'(z)e2a(z)
\Gamma\stackrel{t}{tz}=\Gamma\stackrel{t}{zt}=b'(z)
\Gamma\stackrel{}{either}=0
<The Riemann curvature tensor>
R\stackrel{x}{zxz}=R\stackrel{y}{zyz}=-a''(z)-[a'(z)]2
R\stackrel{z}{tzt}=b''(z)+[b'(z)]2
I tried to find the Ricci scalar curvature(R) from current result, but it gave a function depend on z. Is there any problem in my calculation?
Thanks for answering this question~!
ds2 = e2a(z)(dx2 + dy2) + dz2 − e2b(z)dt2I tried to find the solution, but failed to pass the calculation of Riemann curvature tensor:
<The Christoffel connection> Here a'(z) denotes the first derivative of a(z) respect to z.
\Gamma\stackrel{x}{xz}=\Gamma\stackrel{x}{zx}=a'(z)
\Gamma\stackrel{y}{yz}=\Gamma\stackrel{y}{zy}=a'(z)
\Gamma\stackrel{z}{tt}=b'(z)e2b(z)
\Gamma\stackrel{z}{xx}=\Gamma\stackrel{z}{yy}=-a'(z)e2a(z)
\Gamma\stackrel{t}{tz}=\Gamma\stackrel{t}{zt}=b'(z)
\Gamma\stackrel{}{either}=0
<The Riemann curvature tensor>
R\stackrel{x}{zxz}=R\stackrel{y}{zyz}=-a''(z)-[a'(z)]2
R\stackrel{z}{tzt}=b''(z)+[b'(z)]2
I tried to find the Ricci scalar curvature(R) from current result, but it gave a function depend on z. Is there any problem in my calculation?
Thanks for answering this question~!