Since a\,x^3\,a=x,\, \forall x\in G then for x=e we have a\,e^3\,a=e\Rightarrow a^2=e\Rightarrow a=a^{-1}. Thus
a\,x^3\,a=x\Rightarrow a\,x^3=x\,a \quad \text{and}\quad x^3\,a=a\,x \quad(1)
which yields
x^3\,a=a\,\,x^3\quad (2)
Then for x,\,y \in G we have
x\,y=x\,e\,y\,e\Rightarrow x\,y= x\,a^2\,y\,a^2\Rightarrow x\,y=(x\,a)\,a\,(y\,a)\,a\overset{(1)}\Rightarrow x\,y=(a\,x^3)\,a\,(a\,y^3)\,a\Rightarrow x\,y=a\,x^3\,y^3\,a\overset{(2)}\Rightarrow x\,y=x^3\,a\,a\,y^3\Rightarrow x\,y=x^3\,y^3\Rightarrow
x^{-1}\,x\,y\,y^{-1}=x^{-1}\,x^3\,y^3\,y^{-1}\Rightarrow e=x^2\,y^2\Rightarrow x^{-1}\,y^{-1}=x\,y\Rightarrow (y\,x)^{-1}=x\,y \quad \forall (x,y)\in G \quad (\ast)
Now let in (\ast)\, y=e\Rightarrow x^{-1}=x \quad \forall x\in G, thus
(\ast)\Rightarrow y\,x=x\,y \quad \forall (x,y) \in G