Nested intervals, uncountable sets, unique points.

mathkiddi
Messages
3
Reaction score
0

Homework Statement



Let [a,b] be an interval and let A be a subset of [a,b] and suppose that A is an infinite set.

Suppose that A is uncountable. Prove that there exists a point z which is an element of [a,b] such that A intersect I is uncountable for every open interval I that contains z.

Homework Equations



I don't really know how to start this problem. I know I can use the fact that a set that contains an uncountable subset is uncountable. Any help would be appreciated

The Attempt at a Solution



I know z is an element of I, and that I is uncountable. I also know z is an element of [an, bn]. I know there exists a unique point z in [an, bn] and I know A is uncountable.
 
Physics news on Phys.org
Do you know about compactness?
 
no, we have not covered compactness.
 
mathkiddi, what "completeness" axioms/theorems have you covered? Specifically, have you covered any of these:

least upper bound, bounded monotone sequences, Bolzano-Weierstrass, Heine-Borel, nested intervals, or anything like these? limit points? accumulation points? subsequences?

I also know z is an element of [an, bn].

What is [an, bn]?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top