Net Effect of Z Boson on Charged Particles

Dmitry67
Messages
2,564
Reaction score
1
I was always wondering, on very short distances/high energies, what is a net effect of having not one (gamma) but two (gamma and Z) 'carriers' for the 'force' between 2 charged particles. Does it make an interaction sronger or not?
 
Physics news on Phys.org
In principle, sure, but only at very close range. The 90 GeV mass of the Z corresponds to a distance of about 10-16 cm. By the time you got two electrons that close together, you'd be swamped with other kinds of fireworks.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top