Neutron Temp: Does It Apply to Subatomic Particles?

AI Thread Summary
Temperature does apply to subatomic particles, including neutrons, as it is defined by the average kinetic energy of particles. Slow neutrons are considered "colder" while fast neutrons are "hotter," analogous to classical temperature. The discussion highlights that neutrons can be categorized by temperature in scattering experiments, with terms like cold, thermal, and hot neutrons used. There is a distinction between the temperature of atoms, which can absorb photons, and neutrons, which do not have a similar mechanism for energy absorption. The conversation reflects on the evolving understanding of temperature at the subatomic level, particularly in relation to concepts like absolute zero.
coolul007
Gold Member
Messages
271
Reaction score
8
Does temperature apply to subatomic particles, in particular the neutron? The question is prompted by the definition of absolute zero, being specific to atomic movement.
 
Science news on Phys.org
coolul007 said:
Does temperature apply to subatomic particles, in particular the neutron?
I am not sure if a get question properly but, in general, particles temperature can be defined with its kinetic energy
slow neutrons are colder, hot neutrons are faster..

as analogue of classical temperature, where $$ T \sim <E_k> $$
 
coolul007 said:
Does temperature apply to subatomic particles, in particular the neutron? The question is prompted by the definition of absolute zero, being specific to atomic movement.

I don't think you understand the definition of temperature. It is a measure of the average kinetic energy of an ensemble of ANY particles, neutrons included.

If you do a search, you can even find, especially in a solid state text or webpage, the temperature of the "electron gas" in a conductor at room temperature.

Zz.
 
Yes neutrons have a temperature. For non-relativistic free neutrons (eg: moderated neutrons radiating from a nuclear reactor) the equations are trivial ##E = \frac{3}{2}k_{B}T## where ##E## is the kinetic energy ##E = \frac{1}{2}mv^{2}##. Indeed, at neutron scattering facilities dedicated to using neutrons as a probe of condensed matter, the different instruments are typically classified as cold, thermal, or hot. Which is a direct reference to the neutron temperatures used in the scattering experiments.
 
  • Like
Likes sophiecentaur and BvU
I was thinking of temperature in the classic sense of atom versus subatomic particle. I have been lied to about atoms my whole life, so if I am way off base here I apologize. My understanding is the atoms increase "temperature" by absorbing photons. Therefore a rock that does not have kinetic energy can have "stored heat". Therefore, my thoughts went to particles that don't seem to absorb a photon and are at "rest" in the nucleus of an atom. That is what spurred my question.
 
coolul007 said:
I have been lied to
That's a bit harsh. I probably got the same stories but don't share the feeling; learning is a gradual process that has to start somewhere. And what you can absorb in one step is limited (as well as what you can absorb in a whole lifetime :cry: :confused: ).
 
coolul007 said:
My understanding is the atoms increase "temperature" by absorbing photons.
I wouldn't say that is a meaningful statement. It's trying to extend a macroscopic, statistical idea into the behaviour of a single entity. Absorbing Energy doesn't imply a pro-rata increase in temperature, even in a real gas because input energy can result in an increase in Potential Energy as well as KE. Van der Vaal forces beween gas molecules stop them behaving ideally.
I would say that you haven't been "lied to" as much as taken an inappropriate message from a not-to-good presentation of the situation.
 
BvU said:
That's a bit harsh. I probably got the same stories but don't share the feeling; learning is a gradual process that has to start somewhere. And what you can absorb in one step is limited (as well as what you can absorb in a whole lifetime :cry: :confused: ).
I didn't mean to be harsh, the implication is that, as understanding increases the previous teachings are invalidated. I'm 72 1/2 years old, so you can imagine the world, as well as the subatomic world has changed for me. I ask this question in relation to absolute zero, being the lack of "static" energy in an atom. I was just pondering if there is a subatomic equivalence. No condemnation of physicists on my part. Thank you for your replies.
 
  • Like
Likes BvU
coolul007 said:
I didn't mean to be harsh, the implication is that, as understanding increases the previous teachings are invalidated. I'm 72 1/2 years old, so you can imagine the world, as well as the subatomic world has changed for me. I ask this question in relation to absolute zero, being the lack of "static" energy in an atom. I was just pondering if there is a subatomic equivalence. No condemnation of physicists on my part. Thank you for your replies.
I think you're asking if neutrons have "internal" temperature as well as "external" temperature that SpinFlop described. Atoms can receive energy which pushes electrons into "higher orbits". I don't believe there is an equivalent in neutrons.
 

Similar threads

Back
Top