New to Forum: Proving f(n+3) -3f(n+2) + 3f(n+1)-f(n) = 0

  • Thread starter Thread starter Fabio010
  • Start date Start date
  • Tags Tags
    Forum
Fabio010
Messages
84
Reaction score
0
Hi people, as you can see i am new in this forum.

Sorry if i am posting in wrong section.

Im going to try to traduce the problem.

" f(n) is the sum o n terms of a arithmetic progression. "
Show that :

f(n+3) -3f(n+2) + 3f(n+1)-f(n) = 0


I just want to know if

-3f(n+2) = f(-3n -6) ??
 
Mathematics news on Phys.org
Hi Fabio,

couldn't you test this yourself? Why don't you define an arithmetic progression and try it out to see if it works?

EDIT: You could use the simplest arithmetic progression, f(n) = n
 
Oh, so easy.

Thanks, i never thought that i could define the arithmetic progression.
 
Well, what dacruick means is that you can use that particular sequence to "test" your hypothesis that -3f(n+2)= f(-3n- 6). In fact, since f(n) is defined as "the sum of the first n terms of an arithmetic sequence", I can't help but wonder what "f(-3n-6)" means! Of course, that would not prove the theorem that
f(n+3) -3f(n+2) + 3f(n+1)-f(n) = 0 for all n.

for all arithmetic progressions.

Any arithmetic progression is of the form a, a+ d, a+ 2d, ... with nth term a+ d(n-1)

The sum of n terms of that progression is a+ (a+d)+ (a+ 2d)+ ...+ a+d(n-1)= na+ d(1+ 2+...+ (n-1)). It is well known that 1+ 2+ ...+ n-1= n(n-1)/2 so that is f(n)= na+dn(n-1)/2.

Now, calculate f(n+1), f(n+2), f(n+3) and put them into the formula.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top