New to the method of steepest descent

  • Thread starter Thread starter Beer-monster
  • Start date Start date
  • Tags Tags
    Method
Beer-monster
Messages
285
Reaction score
0

Homework Statement



I'm new to this approximation method and was wondering the best way to proceed with this function:

\int_{-\infty}^{+\infty} dx e^{\frac{ax^{2}}{2}}e^{ln[2cosh(b+cx)]}

I've found the saddle point (I think). But I was wondering if it would be best to expand the x squared term or the ln(cosh) term. If the latter, should I expand the cosh as a taylor series to get ln(expanded cosh) and then expand the logarithm (of the expanded cosh?) and simplify the result?.

Thanks for your help.
 
Physics news on Phys.org
Sorry--I'm not quite sure what the problem you're trying to answer is.
 
I'm not quite sure how to integraye this function using the method of steepest descent. Usually you have a function of a complex variable, which this is not.

And often examples show only one exponential function where I have a product of two, so I'm not 100% which is the more rapidly varying one (i.e. which function do I expand as a Taylor series).

I went ahead and worked with the ln(cosh) function, and calculated its derivatives to get the Taylor series to 2nd order. Now I'm not sure how to move forward? Do I just integrate or do I need to substitute complex variables?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top