Newbie question: Algebra of Mahalanobis distance

  • Thread starter Thread starter anja.ende
  • Start date Start date
  • Tags Tags
    Algebra
anja.ende
Messages
5
Reaction score
0
Hello,

The Mahalanobis distance or rather its square is defined as :

(X-\mu)^2/\Sigma which is then written as

(X-\mu)^{T} Ʃ^{-1}(X-\mu)

Ʃ is the covariance matrix. My silly question is why is the sigma placed in the middle of the dot product of the (X-μ) vector with itself. I am sure this makes sense mathematically (this reduces the output to a scalar) but I would like to know the intuitive reason behind it.

Thanks a lot!
Anja
 
Physics news on Phys.org
The idea behind the Mahalanobis distance is that you are measuring how many standard deviations from the mean X is in the one dimensional case. In multidimensional cases, \Sigma is going to be a positive (semi)definite matrix, which will have a unique positive (semi)definite square root which I will call S. S serves the same role as the standard deviation. Then the expression above is the same as

\left( S^{-1}(X-\mu) \right)^T \left(S^{-1}(X-\mu) \right)

basically, you scale the random vector X-\mu by the standard deviation, the same as you would in the one dimensional case.
 
anja.ende said:
(X-\mu)^{T} Ʃ^{-1}(X-\mu)

Ʃ is the covariance matrix. My silly question is why is the sigma placed in the middle of the dot product of the (X-μ) vector with itself. I am sure this makes sense mathematically (this reduces the output to a scalar) but I would like to know the intuitive reason behind it.
The expression ##(X-\mu)^T \Sigma^{-1}(X-\mu) = \sigma^2## defines a family of hyperellipsoids in the N-dimensional space in which X and μ live, characterized by the scalar parameter σ. I used σ intentionally. Think of σ as representing "standard deviations". For example, ##(X-\mu)^T \Sigma^{-1}(X-\mu) = 1## is the one sigma hyperellipsoid.

The Mahalanobis distance is essentially a measure of how many standard deviations a point X is from the mean μ.
 
Thank you guys!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top