diffeqnoob
- 13
- 0
I just need a hint or something to see where I start. I'm at a loss for a beginning.
Consider the non-homogenous equation
y'' + xy' + y = x^2 +2x +1
Find the power series solution about x=0 of the equation and express your answer in the form:
y=a_0 y_1 + a_1 y_2 + y_p
where a_0 and a_1 are arbitrary constants. Give only the first three nonzero terms of each of the three seriesy_1,y_2, and y_p
Hint: Substitute y = \sum_{n=0}^{\infty}a_nx^{n} and equate coefficients to find a_n, n = 2,3,4,5
Consider the non-homogenous equation
y'' + xy' + y = x^2 +2x +1
Find the power series solution about x=0 of the equation and express your answer in the form:
y=a_0 y_1 + a_1 y_2 + y_p
where a_0 and a_1 are arbitrary constants. Give only the first three nonzero terms of each of the three seriesy_1,y_2, and y_p
Hint: Substitute y = \sum_{n=0}^{\infty}a_nx^{n} and equate coefficients to find a_n, n = 2,3,4,5