Orion1
- 961
- 3
General Relativity...
Non-rotational spherically symmetric body of isotropic perfect fluid Einstein tensor metric element functions:
g_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & g_{tt} & 0 & 0 & 0 \\ dr & 0 & g_{rr} & 0 & 0 \\ d\theta & 0 & 0 & g_{\theta \theta} & 0 \\ d\phi & 0 & 0 & 0 & g_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J = 0
Non-rotational spherically symmetric body of isotropic perfect fluid Stress-Energy tensor metric element functions:
T_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & T_{tt} & 0 & 0 & 0 \\ dr & 0 & T_{rr} & 0 & 0 \\ d\theta & 0 & 0 & T_{\theta \theta} & 0 \\ d\phi & 0 & 0 & 0 & T_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J = 0
If the metric has rotation (J \neq 0) and the Einstein tensor metric element functions become non-zero for g_{t \phi}, do the Stress-Energy tensors also become non-zero for the corresponding Stress-Energy tensors T_{t \phi}?
Rotational spherically symmetric body of isotropic perfect fluid Einstein tensor metric element functions:
g_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & g_{tt} & 0 & 0 & g_{t \phi} \\ dr & 0 & g_{rr} & 0 & 0 \\ d\theta & 0 & 0 & g_{\theta \theta} & 0 \\ d\phi & g_{t \phi} & 0 & 0 & g_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J \neq 0
Rotational spherically symmetric body of isotropic perfect fluid Stress-Energy tensor metric element functions:
T_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & T_{tt} & 0 & 0 & T_{t \phi} \\ dr & 0 & T_{rr} & 0 & 0 \\ d\theta & 0 & 0 & T_{\theta \theta} & 0 \\ d\phi & T_{t \phi} & 0 & 0 & T_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J \neq 0
Reference:
http://en.wikipedia.org/wiki/General_relativity#Einstein.27s_equations - General Relativity and Einstein's equations
http://en.wikipedia.org/wiki/Energy_conditions#Perfect_fluids - Energy Conditions of perfect fluids
Last edited: