Non-rotational and rotational metric tensors

Orion1
Messages
961
Reaction score
3

General Relativity...

Non-rotational spherically symmetric body of isotropic perfect fluid Einstein tensor metric element functions:
g_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & g_{tt} & 0 & 0 & 0 \\ dr & 0 & g_{rr} & 0 & 0 \\ d\theta & 0 & 0 & g_{\theta \theta} & 0 \\ d\phi & 0 & 0 & 0 & g_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J = 0

Non-rotational spherically symmetric body of isotropic perfect fluid Stress-Energy tensor metric element functions:
T_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & T_{tt} & 0 & 0 & 0 \\ dr & 0 & T_{rr} & 0 & 0 \\ d\theta & 0 & 0 & T_{\theta \theta} & 0 \\ d\phi & 0 & 0 & 0 & T_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J = 0

If the metric has rotation (J \neq 0) and the Einstein tensor metric element functions become non-zero for g_{t \phi}, do the Stress-Energy tensors also become non-zero for the corresponding Stress-Energy tensors T_{t \phi}?

Rotational spherically symmetric body of isotropic perfect fluid Einstein tensor metric element functions:
g_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & g_{tt} & 0 & 0 & g_{t \phi} \\ dr & 0 & g_{rr} & 0 & 0 \\ d\theta & 0 & 0 & g_{\theta \theta} & 0 \\ d\phi & g_{t \phi} & 0 & 0 & g_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J \neq 0

Rotational spherically symmetric body of isotropic perfect fluid Stress-Energy tensor metric element functions:
T_{\mu \nu} = \left( \begin{array}{ccccc} \; & dt & dr & d \theta & d\phi \\ dt & T_{tt} & 0 & 0 & T_{t \phi} \\ dr & 0 & T_{rr} & 0 & 0 \\ d\theta & 0 & 0 & T_{\theta \theta} & 0 \\ d\phi & T_{t \phi} & 0 & 0 & T_{\phi \phi} \end{array} \right) \; \; \; \; \; \; J \neq 0

Reference:
http://en.wikipedia.org/wiki/General_relativity#Einstein.27s_equations - General Relativity and Einstein's equations
http://en.wikipedia.org/wiki/Energy_conditions#Perfect_fluids - Energy Conditions of perfect fluids
 
Last edited:
Physics news on Phys.org
The Einstein Field Equation does not relate the metric tensor to the stress-energy tensor. It relates the Einstein tensor to the stress-energy tensor. The Wikipedia page describes (briefly) what the Einstein tensor is.
 
I could not parse your post well enough to give you a good answer, OP, but it seems, like Peter is interpreting, that you think there is a direct relationship between the non-zero members of the metric tensor with the non-zero members of the stress-energy tensor. This is very false, since, for example, in a Schwarzschild space-time all members of the stress-energy tensor are 0 everywhere (except at the singularity) and yet the metric tensor is non-zero.
 
Also, it is possible to get off-diagonal terms in the Einstein tensor even if the metric tensor is diagonal.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top