Non-zero solution of a homogenous system

  • Thread starter Thread starter sunny110
  • Start date Start date
  • Tags Tags
    System
sunny110
Messages
11
Reaction score
0
Hi,
Could anyone give me a proof for the following theorem?
Theorem : Ax=0 has a non-trivial solution iff det(A)=0

Thanks in advance.
/Sunny
 
Physics news on Phys.org
You will find the proof in books such as "Linear Algebra" by Lang. I suggest you check out that book.
 
  • Like
Likes 1 person
This is easier to understand if you think about the geometric meaning of a determinant.

A matrix A represents a linear transformation in a given basis. The determinant is a property of the matrix, but it's also a property of the linear transformation it represents, independently of any basis. The determinant is simply the signed volume change of the volume element.

Now we can see what a zero determinant means: it means the transformed volume element is zero. This transformation has squished it down into a lower-dimensional subspace, which means the mapped basis vectors can't be linearly independent. That means there's a nontrivial linear combination of basis vectors which maps to 0. In other words, there must be some x in this basis such that Ax = 0.
 
  • Like
Likes 1 person
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Replies
21
Views
2K
Replies
17
Views
1K
Replies
3
Views
1K
Replies
14
Views
2K
Replies
9
Views
5K
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top