Nonhomogeneous Power Series Solution

Click For Summary

Discussion Overview

The discussion revolves around finding particular solutions to nonhomogeneous second-order differential equations (DEs) using power series methods and the Frobenius method. Participants explore specific examples and the implications of indicial roots in their solutions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant seeks suggestions for finding a particular solution to the DE y'' - xy = 1 after solving for the complementary solution.
  • Another participant suggests expressing both sides of the equation as power series and equating coefficients, providing an example with e^x.
  • A participant raises a question about indicial roots in the DE xy'' + 2y' - xy = 0, noting that using r = 0 does not yield a valid solution while r = -1 does.
  • One participant references a textbook that states if two roots of the indicial equation differ by an integer, finding an independent solution for the smaller root may be impossible, suggesting a method to reduce the order of the equation.
  • Another participant questions the correctness of the indicial roots, asserting that the correct roots are r = 0 and r = 1.
  • A participant asks if y = 1 is the particular solution for the DE y'' - xy = 1 and inquires about finding the particular solution for y'' + y = x.

Areas of Agreement / Disagreement

Participants express differing views on the selection of indicial roots and their implications for finding solutions. There is no consensus on the correct approach to selecting roots or the validity of the proposed solutions.

Contextual Notes

Participants discuss the challenges associated with indicial roots and the conditions under which certain roots may lead to valid solutions. The discussion highlights the complexity of applying the Frobenius method and the nuances of power series solutions.

Sculptured
Messages
23
Reaction score
0
For the fun of it, my DE book threw in a couple of problems involving nonhomogenous second order DE's in the section I'm currently going through. Although I have solved for the complementary solution, any suggestions on how to find the particular solution?

For example, the one I'm looking at right now is y''-xy = 1.
 
Physics news on Phys.org
1= 1+ 0x+ 0x^2+ 0x^3+ \cdot\cdot\cdot
After you have written the left side of the equation as a power series in x, do the same on the right. Coefficients of powers on the left must equal coefficients of corresponding powers on the right. Here, your coefficient of x0 must be equal to 1 and all others equal to 0.

That was too easy. Suppose your equation were y"- xy= ex?

Expand ex in a power series:
e^x= 1+ x+ (1/2)x^3+ \cdot\cdot\cdot+ (1/n!)x^n+ \cdot\cdot\cdot[/itex]<br /> Now the coefficient of x<sup>n</sup>, on the right, will be equal to 1/n!.
 
Last edited by a moderator:
Thanks; makes good sense.

I have another question. This time it involves indicial roots. Working with the Frobenius method I find that in the DE: xy'' + 2y' -xy = 0 both of the indicial roots come to give me the same series solution. I used r = 0 to attain it and the book used r = -1. (or so I suppose since r=-1 is in their solution) The problem comes in that when I use r = 0 it doesn't solve the DE while r = -1 does. Is there any reason why there should be this difference between roots? Any rule of thumb to work with when picking which roots to use?

The book uses the larger root in its first solution when giving the general way of solving this case of the Frobenius method. When doing an actual example it uses the smaller root for the first solution. I take it that the smaller root should always be applied first?
 
To quote from a differential equations textbook,
Differential Equations by Mark Krusemeyer said:
If two roots of the indicial equation differ by an integer, it may be impossible to find an independent solution of the form
x^{\lambda_1}\sum_{n=0}^\infty{a_nx^n}
for the smaller root.

In that case, you can use the known solution, corresponding to the larger root of the indicial equation, to reduce the order of the equation and solve that for an independent solution. Of course, since you only know the first solution as an infinite series, that may be very difficult!
 
Sculptured said:
Thanks; makes good sense.

I have another question. This time it involves indicial roots. Working with the Frobenius method I find that in the DE: xy'' + 2y' -xy = 0 both of the indicial roots come to give me the same series solution. I used r = 0 to attain it and the book used r = -1. (or so I suppose since r=-1 is in their solution) The problem comes in that when I use r = 0 it doesn't solve the DE while r = -1 does. Is there any reason why there should be this difference between roots? Any rule of thumb to work with when picking which roots to use?

The book uses the larger root in its first solution when giving the general way of solving this case of the Frobenius method. When doing an actual example it uses the smaller root for the first solution. I take it that the smaller root should always be applied first?

I think you have got the indicial roots wrong. The correct roots are r=0 and r=1.
 
quick question. So for this question, y" - xy = 1...is the particular solution y=1?Also, how would i find the particular solution to y"+y=x?
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K