snowJT
- 117
- 0
Homework Statement
I'm told that this is homogenous
(x^2-xy)y'+y^2 = 0
2. The attempt at a solution
This is going to be very painful for me to type out...
(x^2-xy)\frac{dy}{dx} = -y^2
\frac{dy}{dx} = \frac{-y^2}{(x^2-xy)}
\frac{dy}{dx} = \frac{-y^2}{(x^2-xy)}
v+x\frac{dv}{dx} = \frac{-x^2v^2}{(x^2-x^2v)}
v+x\frac{dv}{dx} = \frac{-x^2v^2}{x^2(1-v)}
v+x\frac{dv}{dx} = \frac{-v^2}{(1-v)}
\frac{v+1-v}{-v^2}dv = \frac {dx}{x}
\frac{dv}{-v^2} = \frac {dx}{x}
\int-v^-^2dv = \int\frac {dx}{x}
v^-^1 =ln|x|+C
\frac{y^-^1}{x^-^1} = ln|x|+C
y^-^1 = x ln|x|+C
\frac{1}{y} = x ln|x|+C
\frac{1}{y} = \frac {ln|x|+C}{x}
0 = \frac {y ln|x|+C}{x}
-Cx = y ln|x|
But the answer is...
xln|y| - y = Cx
Last edited: