Am I right in saying that Zp x Zp (the product of the integers mod p, a prime, with itself) has only 3 nontrivial subgroups?(adsbygoogle = window.adsbygoogle || []).push({});

By Lagrange's theorem, we know any nontrivial subgroup would have order p, since the order of Zp x Zp is p^2.

So I am looking at it like this:

Picture all elements of Zp x Zp filling a p x p matrix, with (0,0) in the top left and (p-1, p-1) in the bottom right. The only nontrivial subgroups I see that you can form are by taking all the elements in the first column, all the elements in the first row, and all the elements on the main diagonal.

Is this correct?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Nontrivial subgroups of Zp x Zp

**Physics Forums | Science Articles, Homework Help, Discussion**