Normal force for a lever model

AI Thread Summary
The discussion centers on a lever model on a tabletop, where one arm is horizontal and the other is raised at an angle. The user seeks to simplify the torque equation by eliminating the normal force (N) while maintaining static equilibrium. It is suggested that N can be ignored when the horizontal arm rests on the table, as it exerts no torque through the fulcrum. The conversation emphasizes the importance of calculating the center of gravity for accurate moment calculations. Ultimately, the user is exploring the implications of assuming N is negligible in their model.
anothersnail
Messages
3
Reaction score
0
My model is a lever on a table top. One arm is horizontal on the table, while the other arm is raised at an angle alpha. I'm assuming the weight of the horizontal lever (F) acts at its center of gravity at a distance f from the pivot, while the weight of the raised lever (W) acts at its center of gravity at a distance s from the pivot. Finally, the normal force is N. At static equilibrium the torque equation would be:

f x F - N = s x W x Cos α

To simplify the equation, I need to eliminate the normal force.
Can I assume that the torque of the raised lever (s x W x Cos α) is such that it ever so slightly exceeds the term (f x F), so that N is approximately zero yet the system still remains at static equilibrium? I realize this is a contradiction of terms, but I can't think of another way to assume N=0.

Any suggestions will be appreciated.

Stan
 
Physics news on Phys.org
Is N the reaction of the table on the lever arm?
 
Yes, N is the force of the table opposing that of the weight of the resting lever arm when the latter is not balanced by the raised arm.
 
When the system is just balancing on its "corner", N acts thru the fulcrum so exerts no torque and can be ignored.
When the horizontal arm is resting firmly on the table, N acts thru the CG of the complete system (including both arms). So calculate the location of this point and then take moments about it.
You have here a machine whose geometry changes depending on loading.
 
I suppose I can assume that N acts thru the fulcrum even when the horizontal arm is on the table & therefore, ignore it. Otherwise the equation becomes useless for my purpose.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top