Jano L.
Gold Member
- 1,330
- 75
Do you know some example of an operator, other than momentum or position, that has (at least partially) continuous spectrum with eigenvalues s, and the corresponding eigenfunctions obey
<br /> (\Phi_s,\Phi_s') = \int \Phi_s^*(q) \, \Phi_{s'} (q)~ dq = \delta(s-s')~?<br />
EDIT
For example, Hamiltonian of a free particle does not work with this, because the integral
<br /> \int \Phi_\epsilon^*(q) \, \Phi_{\epsilon'} (q)~ dq <br />
with \Phi_\epsilon(q) = e^{i \sqrt{2m\epsilon} \,q/\hbar} does not equal to \delta(\epsilon - \epsilon').
<br /> (\Phi_s,\Phi_s') = \int \Phi_s^*(q) \, \Phi_{s'} (q)~ dq = \delta(s-s')~?<br />
EDIT
For example, Hamiltonian of a free particle does not work with this, because the integral
<br /> \int \Phi_\epsilon^*(q) \, \Phi_{\epsilon'} (q)~ dq <br />
with \Phi_\epsilon(q) = e^{i \sqrt{2m\epsilon} \,q/\hbar} does not equal to \delta(\epsilon - \epsilon').