Notation confusion; |\pi N; I, I_3> states

Gregg
Messages
452
Reaction score
0
Notation confusion; ## |\pi N; I, I_3 \rangle ## states

In my book it says for the ##\pi N ## state:

##|\pi N; \frac{3}{2},\frac{3}{2}\rangle =|\pi ;1,1\rangle | N; \frac{1}{2},\frac{1}{2}\rangle##

firstly, does this mean:

##|\pi N; \frac{3}{2},\frac{3}{2}\rangle =|\pi ;1,1\rangle \otimes | N; \frac{1}{2},\frac{1}{2}\rangle## ?

Not that it really matters, but next it says that you can use quantum mechanical shift ladder to get


##|\pi N; \frac{3}{2},\frac{1}{2}\rangle =-\sqrt{\frac{1}{3}}|\pi ^+n\rangle +\sqrt{\frac{2}{3}}| \pi ^0 p\rangle##

I'm really not too sure what this means, and the notation is not too clear to me, could someone explain it to me? In the title I and I_3 refers to isospin. I don't know what the N indicates, Baryon number? Is the tensor product a key to get the coefficients, are they similar to Clebsch-Gordon coefficients or what is the ladder operation for spin in terms of these vectors? I really don't have much understanding of the notation or implications at the moment.
 
Last edited:
Physics news on Phys.org
The N stands for Nucleon. The nucleon states with I=1/2 are proton (I3= +1/2) and neutron (I3 = -1/2). So the first line says the combined state with I = 3/2, I3 = 3/2 consists of π+ and proton.

To get the last line, we apply the operator I- that lowers total I3. It acts on both the pion and the proton. Lowering the proton to a neutron gives us the first term, while lowering the π+ to a π0 gives us the second term. As you say, the √'s in front of these terms are Clebsch-GordAn coefficients.
 
Bill_K said:
The N stands for Nucleon. The nucleon states with I=1/2 are proton (I3= +1/2) and neutron (I3 = -1/2). So the first line says the combined state with I = 3/2, I3 = 3/2 consists of π+ and proton.

To get the last line, we apply the operator I- that lowers total I3. It acts on both the pion and the proton. Lowering the proton to a neutron gives us the first term, while lowering the π+ to a π0 gives us the second term. As you say, the √'s in front of these terms are Clebsch-GordAn coefficients.


OK, so would a way to look at that operation be:

##I_- |\pi N; \frac{3}{2},\frac{3}{2}\rangle = I_- |\pi ;1,1\rangle \otimes | N; \frac{1}{2},\frac{1}{2}\rangle + |\pi ;1,1\rangle \otimes I_-| N; \frac{1}{2},\frac{1}{2}\rangle## ?

Which will give me

## k_1 |\pi^0 p \rangle + k_2 | \pi^+ n\rangle ## ?

where the coefficients are CG coefficients?
 
Thanks for the help
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top