- #1
Eagle9
- 238
- 10
The nuclear explosion occurs when the nucleus of atom of Uranium (of Plutonium) are split in two pieces by neutrons. These two pieces are repelled from each other due to (the same) positive charge; these pieces are moving quickly between other Uranium atoms, colliding with them. These collisions results in extremely increasing the temperature and eventually-explosion, right?
Now, when some certain object is falling in the black hole the latter’s tidal forces will destroy this object. First the chemical bonds (covalent, ionic, hydrogen) will be broken between atoms, then the electrons will be separated from nucleus. Afterwards the nucleus will be broken into protons and neutrons. But these protons will also repel from each other because of the same reason as it was in case of nuclear fission.
So, can the black hole’s tidal forces trigger the nuclear explosion if we push the Uranium object (sphere, cylinder and etc.) into the black hole?
Now, when some certain object is falling in the black hole the latter’s tidal forces will destroy this object. First the chemical bonds (covalent, ionic, hydrogen) will be broken between atoms, then the electrons will be separated from nucleus. Afterwards the nucleus will be broken into protons and neutrons. But these protons will also repel from each other because of the same reason as it was in case of nuclear fission.
So, can the black hole’s tidal forces trigger the nuclear explosion if we push the Uranium object (sphere, cylinder and etc.) into the black hole?