Numerical Analysis: Interpolatory Requirement & Coefficient Conditions

buzzmath
Messages
108
Reaction score
0

Homework Statement


take the rational function R(x)=(a+bx)\(c+dx). What does the interpolatory requirment R(xi)=yi, i=1,2,3,4 amount to? under what conditions can you find coefficients? uniquely?


Homework Equations





The Attempt at a Solution


Let y=[y1,y2,y3,y4] and v=[a,b,c,d] and let A be an 4x4 matrix. then I want to try to write this as Av=y and the solution would would exist and be unique when A is invertible. so I write a+bxi=(c+dxi)yi. then I can write a+bxi-cyi-d(xi)(yi)=0 but this won't give me the solution because we could just write a=b=c=d=0 for any x and y. since I know yi and xi I could have a+bxi-cyi = d(xi)(yi) and set up the matrix that way but it still won't give me what I want since I wouldn't be able to find d. Am I on the right track? any suggestions on where to go from here? thanks
 
Physics news on Phys.org
In A you have 16 matrix elements, but Av = y corresponds to only 4 equations. You need 12 more equations for a unique solution.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top