Numerical solution of one dimensional Schrodinger equation

mojtaba m
Messages
2
Reaction score
0
Hi,
I want to solve one dimensional Schrodinger equation for a scattering problem. The potential function is 1/ ( 1+exp(-x) ). So at -∞ it goes to 0 and at ∞ it's 1. The energy level is more than 1. I used Numerov's method and integrated it from +∞ (far enough) backwards with an initial value =1 . But I believe it's wrong b/c squared wave function is oscillating on whole interval and it's supposed to be constant after the jump in potential. I know that I'm doing somewhere wrong in my solution So I would appreciate you if you help me by this or introduce me some sources.
Thanks,
Moji
 
Physics news on Phys.org
mojtaba m said:
But I believe it's wrong b/c squared wave function is oscillating on whole interval and it's supposed to be constant after the jump in potential.

Sounds like your solution is a linear combination of a particle incoming from the left and a particle incoming from the right. Interference of ##e^{ipx}## and ##e^{-ipx}## terms would produce this oscillating behavior. Maybe you can find two solutions and take a linear combination to eliminate the left-moving component on the right side of the potential jump?
 
Actually we have two wave function A exp(ipx) and B exp(−ipx) at far left and one C exp(iqx) at far right. I need to write my program in a way which the coefficients A, B and C been determined self-consistently.
 
mojtaba m said:
Actually we have two wave function A exp(ipx) and B exp(−ipx) at far left and one C exp(iqx) at far right.

Right, but the most general solution to the Schrodinger equation also has a D exp(-iqx) component at the far right. Are you doing anything to prevent this component from appearing in your numerical solution?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top