I Observing a Collapsing Shell: Time Dilation Explained

blademan9999
Messages
1
Reaction score
0
TL;DR Summary
Observer inside collapsing shell problem.
What does and observer inside of a collapsing shell observe? Lets say we have a shell of matter collapsing to a black hole. What would observers near the center see? How would the rest of the universe appear when,

The shell is approaching the Schwarzschild radius?

After the shell passes the Schwarzschild radius?

Time Dilation inside a hollow shell According to here you get time dialation, so what happens as the shell contracts?

Say the observer has a clock, and the inside of the shell is like a mirror, theres a clock attached to the shell and finally there's a clock at a great distance. How fast would these clocks go relative to eachother?

Until the shell reaches the observer, the observer is free to move aorund, so the issue to me seems to be that whe have a shell observer inside of a black hole, which normally you're not supposed to be able to have.
 
Physics news on Phys.org
Welcome to PF. :smile:

One tip -- you can scroll to the bottom of your thread to see the similar threads that the forum software automatically suggests based on your thread title. You may find some of your answers in those recent threads. :smile:
 
See https://www.physicsforums.com/threa...of-a-singularity-before-it-is-formed.1017274/. A lot of your question is answered by that. Basically, the event horizon forms inside the shell and expands outward at the speed of light. Once it passes you (you can't detect anything locally as it does) you're doomed. You just don't see any local curvature until the shell passes you in the other direction.
 
Last edited:
  • Like
Likes PeterDonis and PeroK
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
6
Views
1K
Replies
45
Views
3K
Replies
57
Views
6K
Replies
22
Views
1K
Replies
57
Views
4K
Replies
8
Views
1K
Replies
43
Views
3K
Back
Top