Odd Numbers Starting with Even Number ≤ 100,000

  • Thread starter Thread starter blumfeld0
  • Start date Start date
  • Tags Tags
    Numbers
AI Thread Summary
The discussion focuses on determining how many odd numbers less than 100,000 start with an even digit. It is established that there are 50,000 odd numbers in total below this threshold. The analysis breaks down the problem by examining each range of numbers starting with even digits (2, 4, 6, 8) and calculates the odd numbers within those ranges. The total count of odd numbers starting with an even digit is calculated to be 22,220. This methodical approach highlights the importance of breaking down the problem into manageable parts for accurate results.
blumfeld0
Messages
146
Reaction score
0
I have a quick question. How many number less than 100,000 are odd numbers but START with an even number??
I was thinking there are 50,000 odd numbers less than 100,000 but how many of those start with an even number?

thanks
 
Mathematics news on Phys.org
Take it one digit at a time. Start within the one's digit. 1, 2, 3, 4, 5, 6, 7, 8, 9.. HOw many of those are even. Then move on to the 10's digit, 10 - 99 how many of those are even, and do you see a pattern between the one's digit place, and the 10's digit place, if so can you extend that to the 100's? 1,000's? 10,000's?
 
blumfeld0 said:
I have a quick question. How many number less than 100,000 are odd numbers but START with an even number??
I was thinking there are 50,000 odd numbers less than 100,000 but how many of those start with an even number?

thanks

not sure if you have learned how to use AP to tackle this qns.

2 4 6 8

For numbers starting with 2, we have 2, (20-29) , (200-299), (2000-2999), (20000-29999)

same for 4 6 and 8

For odd # starting with 2 :

For 2,
0

For 20-29,
1st odd term is 21 , d is 2, last term is 29
Tn = a + (n -1 )d
29 = 21 + (n-1)2
n = 5

For 200 to 299,
1st odd term is 201 , d is 2, last term is 299
Tn = a + (n -1 )d
299 = 201 + (n-1)2
n = 50

For 2000 to 2999,
1st odd term is 2001 , d is 2, last term is 2999
Tn = a + (n -1 )d
2999 = 2001 + (n-1)2
n = 500

For 20000 to 29999,
1st odd term is 20001 , d is 2, last term is 29999
Tn = a + (n -1 )d
29999 = 20001 + (n-1)2
n = 5000

Total # of terms = 4 x (5 + 50 + 500 + 5000) = 22220

I hope this will be of some help
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top