Odd Prime Triples: Find & Explore Solutions!

  • Thread starter Thread starter steiner1745
  • Start date Start date
  • Tags Tags
    Primes Ring
steiner1745
Messages
1
Reaction score
0
I got this question from another
forum and it's driving me crazy.
Find all triples of odd primes,
p,q,r such that
p^2+1 is divisible by q, q^2+1 is divisible by r
and r^2+1 is divisible by p.
Two such triples are 5,13,17
and 17,29,421. If we assume
p<q<r, then there are no other
such triples with p<10^7.
Are there any others?
Anyone have any ideas?
From quadratic residue theory
we know that p,q,r are all
congruent to 1(mod 4).
Can we say more?
 
Last edited:
Physics news on Phys.org
(2,5,13) also works...
 
micromass said:
(2,5,13) also works...

nice observation but 2 is not an odd prime.

Years ago i thought i solved the BEAL CONJECTURE because i found 3^5 + 10^2 = 7^3

Then my math prof. pointed out ALL exponents must be integers greater than 2.:smile:
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top